more work on the fyp

This commit is contained in:
Andre Henriques 2024-02-03 12:39:22 +00:00
parent 70b4141223
commit cbfd49c5fb
2 changed files with 216 additions and 25 deletions

View File

@ -237,7 +237,7 @@ func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load
return
}
layers, err := c.Db.Query("select layer_type, shape from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
layers, err := c.Db.Query("select layer_type, shape, exp_type from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
if err != nil {
return
}
@ -246,22 +246,35 @@ func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load
type layerrow struct {
LayerType int
Shape string
ExpType int
LayerNum int
}
got := []layerrow{}
remove_top_count := 1
i := 1
for layers.Next() {
var row = layerrow{}
if err = layers.Scan(&row.LayerType, &row.Shape); err != nil {
if err = layers.Scan(&row.LayerType, &row.Shape, &row.ExpType); err != nil {
return
}
row.LayerNum = i
if row.ExpType == 2 {
remove_top_count += 1
}
row.Shape = shapeToSize(row.Shape)
got = append(got, row)
i += 1
}
got = append(got, layerrow{
LayerType: LAYER_DENSE,
Shape: fmt.Sprintf("%d", exp.end-exp.start),
ExpType: 2,
LayerNum: i,
})
// Generate run folder
@ -287,7 +300,7 @@ func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load
}
defer f.Close()
tmpl, err := template.New("python_model_template.py").ParseFiles("views/py/python_model_template.py")
tmpl, err := template.New("python_model_template-exp.py").ParseFiles("views/py/python_model_template.py")
if err != nil {
return
}
@ -307,6 +320,7 @@ func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load
"LoadPrev": load_prev,
"LastModelRunPath": path.Join(getDir(), result_path, "model.keras"),
"SaveModelPath": path.Join(getDir(), result_path),
"RemoveTopCount": remove_top_count,
}); err != nil {
return
}

View File

@ -0,0 +1,177 @@
import tensorflow as tf
import random
import pandas as pd
from tensorflow import keras
from tensorflow.data import AUTOTUNE
from keras import layers, losses, optimizers
import requests
class NotifyServerCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, log, *args, **kwargs):
requests.get(f'http://localhost:8000/model/epoch/update?model_id={{.Model.Id}}&epoch={epoch + 1}&accuracy={log["accuracy"]}&definition={{.DefId}}')
DATA_DIR = "{{ .DataDir }}"
image_size = ({{ .Size }})
df = pd.read_csv("{{ .RunPath }}/train.csv", dtype=str)
keys = tf.constant(df['Id'].dropna())
values = tf.constant(list(map(int, df['Index'].dropna())))
table = tf.lookup.StaticHashTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=keys,
values=values,
),
default_value=tf.constant(-1),
name="Indexes"
)
DATA_DIR_PREPARE = DATA_DIR + "/"
#based on https://www.tensorflow.org/tutorials/load_data/images
def pathToLabel(path):
path = tf.strings.regex_replace(path, DATA_DIR_PREPARE, "")
{{ if eq .Model.Format "png" }}
path = tf.strings.regex_replace(path, ".png", "")
{{ else if eq .Model.Format "jpeg" }}
path = tf.strings.regex_replace(path, ".jpeg", "")
{{ else }}
ERROR
{{ end }}
return table.lookup(tf.strings.as_string([path]))
def decode_image(img):
{{ if eq .Model.Format "png" }}
img = tf.io.decode_png(img, channels={{.ColorMode}})
{{ else if eq .Model.Format "jpeg" }}
img = tf.io.decode_jpeg(img, channels={{.ColorMode}})
{{ else }}
ERROR
{{ end }}
return tf.image.resize(img, image_size)
def process_path(path):
label = pathToLabel(path)
img = tf.io.read_file(path)
img = decode_image(img)
return img, label
def configure_for_performance(ds: tf.data.Dataset, size: int) -> tf.data.Dataset:
#ds = ds.cache()
ds = ds.shuffle(buffer_size=size)
ds = ds.batch(batch_size)
ds = ds.prefetch(AUTOTUNE)
return ds
def prepare_dataset(ds: tf.data.Dataset, size: int) -> tf.data.Dataset:
ds = ds.map(process_path, num_parallel_calls=AUTOTUNE)
ds = configure_for_performance(ds, size)
return ds
def filterDataset(path):
path = tf.strings.regex_replace(path, DATA_DIR_PREPARE, "")
{{ if eq .Model.Format "png" }}
path = tf.strings.regex_replace(path, ".png", "")
{{ else if eq .Model.Format "jpeg" }}
path = tf.strings.regex_replace(path, ".jpeg", "")
{{ else }}
ERROR
{{ end }}
return tf.reshape(table.lookup(tf.strings.as_string([path])), []) != -1
seed = random.randint(0, 100000000)
batch_size = 64
# Read all the files from the direcotry
list_ds = tf.data.Dataset.list_files(str(f'{DATA_DIR}/*'), shuffle=False)
list_ds = list_ds.filter(filterDataset)
image_count = len(list(list_ds.as_numpy_iterator()))
list_ds = list_ds.shuffle(image_count, seed=seed)
val_size = int(image_count * 0.3)
train_ds = list_ds.skip(val_size)
val_ds = list_ds.take(val_size)
dataset = prepare_dataset(train_ds, image_count)
dataset_validation = prepare_dataset(val_ds, val_size)
track = 0
def addBlock(
b_size: int,
filter_size: int,
kernel_size: int = 3,
top: bool = True,
pooling_same: bool = False,
pool_func=layers.MaxPool2D,
layerNum = 0
):
global track
# model = keras.Sequential(name=f"{track}-{b_size}-{filter_size}-{kernel_size}")
model = keras.Sequential(name=f"layer{layerNum}")
track += 1
for _ in range(b_size):
model.add(layers.Conv2D(
filter_size,
kernel_size,
padding="same"
))
model.add(layers.ReLU())
if top:
if pooling_same:
model.add(pool_func(padding="same", strides=(1, 1)))
else:
model.add(pool_func())
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.4))
return model
{{ if .LoadPrev }}
model = tf.keras.saving.load_model('{{.LastModelRunPath}}')
{{ else }}
model = keras.Sequential()
{{- range .Layers }}
{{- if eq .LayerType 1}}
model.add(layers.Rescaling(1./255, name="layer{{ .LayerNum }}"))
{{- else if eq .LayerType 2 }}
model.add(layers.Dense({{ .Shape }}, activation="sigmoid", name="layer{{ .LayerNum }}"))
{{- else if eq .LayerType 3}}
model.add(layers.Flatten(name="layer{{ .LayerNum }}"))
{{- else if eq .LayerType 4}}
model.add(addBlock(2, 128, 3, pool_func=layers.AveragePooling2D, layerNum={{.LayerNum}}))
{{- else }}
ERROR
{{- end }}
{{- end }}
{{ end }}
model.compile(
loss=losses.SparseCategoricalCrossentropy(),
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
his = model.fit(dataset, validation_data= dataset_validation, epochs={{.EPOCH_PER_RUN}}, callbacks=[
NotifyServerCallback(),
tf.keras.callbacks.EarlyStopping("loss", mode="min", patience=5)], use_multiprocessing = True)
acc = his.history["accuracy"]
f = open("accuracy.val", "w")
f.write(str(acc[-1]))
f.close()
tf.saved_model.save(model, "{{ .SaveModelPath }}/model")
model.save("{{ .SaveModelPath }}/model.keras")