1259 lines
34 KiB
Go
1259 lines
34 KiB
Go
package models_train
|
|
|
|
import (
|
|
"database/sql"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"net/http"
|
|
"os"
|
|
"os/exec"
|
|
"path"
|
|
"sort"
|
|
"strconv"
|
|
"text/template"
|
|
|
|
model_classes "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/classes"
|
|
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/utils"
|
|
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/utils"
|
|
"github.com/charmbracelet/log"
|
|
)
|
|
|
|
const EPOCH_PER_RUN = 20
|
|
const MAX_EPOCH = 100
|
|
|
|
func MakeDefenition(db *sql.DB, model_id string, target_accuracy int) (id string, err error) {
|
|
id = ""
|
|
rows, err := db.Query("insert into model_definition (model_id, target_accuracy) values ($1, $2) returning id;", model_id, target_accuracy)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
if !rows.Next() {
|
|
return id, errors.New("Something wrong!")
|
|
}
|
|
err = rows.Scan(&id)
|
|
return
|
|
}
|
|
|
|
func ModelDefinitionUpdateStatus(c *Context, id string, status ModelDefinitionStatus) (err error) {
|
|
_, err = c.Db.Exec("update model_definition set status = $1 where id = $2", status, id)
|
|
return
|
|
}
|
|
|
|
func MakeLayer(db *sql.DB, def_id string, layer_order int, layer_type LayerType, shape string) (err error) {
|
|
_, err = db.Exec("insert into model_definition_layer (def_id, layer_order, layer_type, shape) values ($1, $2, $3, $4)", def_id, layer_order, layer_type, shape)
|
|
return
|
|
}
|
|
|
|
func MakeLayerExpandable(db *sql.DB, def_id string, layer_order int, layer_type LayerType, shape string, exp_type int) (err error) {
|
|
_, err = db.Exec("insert into model_definition_layer (def_id, layer_order, layer_type, shape, exp_type) values ($1, $2, $3, $4, $5)", def_id, layer_order, layer_type, shape, exp_type)
|
|
return
|
|
}
|
|
|
|
func generateCvs(c *Context, run_path string, model_id string) (count int, err error) {
|
|
|
|
classes, err := c.Db.Query("select count(*) from model_classes where model_id=$1;", model_id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer classes.Close()
|
|
if !classes.Next() {
|
|
return
|
|
}
|
|
if err = classes.Scan(&count); err != nil {
|
|
return
|
|
}
|
|
|
|
data, err := c.Db.Query("select mdp.id, mc.class_order, mdp.file_path from model_data_point as mdp inner join model_classes as mc on mc.id = mdp.class_id where mc.model_id = $1 and mdp.model_mode=$2;", model_id, model_classes.DATA_POINT_MODE_TRAINING)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer data.Close()
|
|
|
|
f, err := os.Create(path.Join(run_path, "train.csv"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
f.Write([]byte("Id,Index\n"))
|
|
|
|
for data.Next() {
|
|
var id string
|
|
var class_order int
|
|
var file_path string
|
|
if err = data.Scan(&id, &class_order, &file_path); err != nil {
|
|
return
|
|
}
|
|
if file_path == "id://" {
|
|
f.Write([]byte(id + "," + strconv.Itoa(class_order) + "\n"))
|
|
} else {
|
|
return count, errors.New("TODO generateCvs to file_path " + file_path)
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func trainDefinition(c *Context, model *BaseModel, definition_id string, load_prev bool) (accuracy float64, err error) {
|
|
c.Logger.Warn("About to start training definition")
|
|
accuracy = 0
|
|
layers, err := c.Db.Query("select layer_type, shape from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer layers.Close()
|
|
|
|
type layerrow struct {
|
|
LayerType int
|
|
Shape string
|
|
}
|
|
|
|
got := []layerrow{}
|
|
|
|
for layers.Next() {
|
|
var row = layerrow{}
|
|
if err = layers.Scan(&row.LayerType, &row.Shape); err != nil {
|
|
return
|
|
}
|
|
row.Shape = shapeToSize(row.Shape)
|
|
got = append(got, row)
|
|
}
|
|
|
|
// Generate run folder
|
|
run_path := path.Join("/tmp", model.Id, "defs", definition_id)
|
|
|
|
err = os.MkdirAll(run_path, os.ModePerm)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer os.RemoveAll(run_path)
|
|
|
|
_, err = generateCvs(c, run_path, model.Id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Create python script
|
|
f, err := os.Create(path.Join(run_path, "run.py"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
|
|
tmpl, err := template.New("python_model_template.py").ParseFiles("views/py/python_model_template.py")
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Copy result around
|
|
result_path := path.Join("savedData", model.Id, "defs", definition_id)
|
|
|
|
if err = tmpl.Execute(f, AnyMap{
|
|
"Layers": got,
|
|
"Size": got[0].Shape,
|
|
"DataDir": path.Join(getDir(), "savedData", model.Id, "data"),
|
|
"RunPath": run_path,
|
|
"ColorMode": model.ImageMode,
|
|
"Model": model,
|
|
"EPOCH_PER_RUN": EPOCH_PER_RUN,
|
|
"DefId": definition_id,
|
|
"LoadPrev": load_prev,
|
|
"LastModelRunPath": path.Join(getDir(), result_path, "model.keras"),
|
|
"SaveModelPath": path.Join(getDir(), result_path),
|
|
}); err != nil {
|
|
return
|
|
}
|
|
|
|
// Run the command
|
|
out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).CombinedOutput()
|
|
if err != nil {
|
|
c.Logger.Debug(string(out))
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("Python finished running")
|
|
|
|
if err = os.MkdirAll(result_path, os.ModePerm); err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy_file, err := os.Open(path.Join(run_path, "accuracy.val"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer accuracy_file.Close()
|
|
|
|
accuracy_file_bytes, err := io.ReadAll(accuracy_file)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy, err = strconv.ParseFloat(string(accuracy_file_bytes), 64)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("Model finished training!", "accuracy", accuracy)
|
|
return
|
|
}
|
|
|
|
func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load_prev bool) (accuracy float64, err error) {
|
|
accuracy = 0
|
|
|
|
c.Logger.Warn("About to start training definition")
|
|
|
|
// Get untrained models heads
|
|
|
|
// Status = 2 (INIT)
|
|
rows, err := c.Db.Query("select id, range_start, range_end exp_model_head where def_id=$1 and status = 2", definition_id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
type ExpHead struct {
|
|
id string
|
|
start int
|
|
end int
|
|
}
|
|
|
|
exp := ExpHead{}
|
|
|
|
if rows.Next() {
|
|
if err = rows.Scan(&exp.id, &exp.start, &exp.end); err == nil {
|
|
return
|
|
}
|
|
} else {
|
|
log.Error("Failed to get the exp head of the model")
|
|
err = errors.New("Failed to get the exp head of the model")
|
|
return
|
|
}
|
|
|
|
if rows.Next() {
|
|
log.Error("This training function can only train one model at the time")
|
|
err = errors.New("This training function can only train one model at the time")
|
|
return
|
|
}
|
|
|
|
layers, err := c.Db.Query("select layer_type, shape, exp_type from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer layers.Close()
|
|
|
|
type layerrow struct {
|
|
LayerType int
|
|
Shape string
|
|
ExpType int
|
|
LayerNum int
|
|
}
|
|
|
|
got := []layerrow{}
|
|
|
|
remove_top_count := 1
|
|
|
|
i := 1
|
|
|
|
for layers.Next() {
|
|
var row = layerrow{}
|
|
if err = layers.Scan(&row.LayerType, &row.Shape, &row.ExpType); err != nil {
|
|
return
|
|
}
|
|
row.LayerNum = i
|
|
if row.ExpType == 2 {
|
|
remove_top_count += 1
|
|
}
|
|
row.Shape = shapeToSize(row.Shape)
|
|
got = append(got, row)
|
|
i += 1
|
|
}
|
|
|
|
got = append(got, layerrow{
|
|
LayerType: LAYER_DENSE,
|
|
Shape: fmt.Sprintf("%d", exp.end-exp.start),
|
|
ExpType: 2,
|
|
LayerNum: i,
|
|
})
|
|
|
|
// Generate run folder
|
|
run_path := path.Join("/tmp", model.Id, "defs", definition_id)
|
|
|
|
err = os.MkdirAll(run_path, os.ModePerm)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer os.RemoveAll(run_path)
|
|
|
|
_, err = generateCvs(c, run_path, model.Id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// TODO update the run script
|
|
|
|
// Create python script
|
|
f, err := os.Create(path.Join(run_path, "run.py"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
|
|
tmpl, err := template.New("python_model_template-exp.py").ParseFiles("views/py/python_model_template.py")
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Copy result around
|
|
result_path := path.Join("savedData", model.Id, "defs", definition_id)
|
|
|
|
if err = tmpl.Execute(f, AnyMap{
|
|
"Layers": got,
|
|
"Size": got[0].Shape,
|
|
"DataDir": path.Join(getDir(), "savedData", model.Id, "data"),
|
|
"RunPath": run_path,
|
|
"ColorMode": model.ImageMode,
|
|
"Model": model,
|
|
"EPOCH_PER_RUN": EPOCH_PER_RUN,
|
|
"DefId": definition_id,
|
|
"LoadPrev": load_prev,
|
|
"LastModelRunPath": path.Join(getDir(), result_path, "model.keras"),
|
|
"SaveModelPath": path.Join(getDir(), result_path),
|
|
"RemoveTopCount": remove_top_count,
|
|
}); err != nil {
|
|
return
|
|
}
|
|
|
|
// Run the command
|
|
out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).CombinedOutput()
|
|
if err != nil {
|
|
c.Logger.Debug(string(out))
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("Python finished running")
|
|
|
|
if err = os.MkdirAll(result_path, os.ModePerm); err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy_file, err := os.Open(path.Join(run_path, "accuracy.val"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer accuracy_file.Close()
|
|
|
|
accuracy_file_bytes, err := io.ReadAll(accuracy_file)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy, err = strconv.ParseFloat(string(accuracy_file_bytes), 64)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("Model finished training!", "accuracy", accuracy)
|
|
return
|
|
}
|
|
|
|
func remove[T interface{}](lst []T, i int) []T {
|
|
lng := len(lst)
|
|
if i >= lng {
|
|
return []T{}
|
|
}
|
|
|
|
if i+1 >= lng {
|
|
return lst[:lng-1]
|
|
}
|
|
|
|
if i == 0 {
|
|
return lst[1:]
|
|
}
|
|
|
|
return append(lst[:i], lst[i+1:]...)
|
|
}
|
|
|
|
type TrainModelRow struct {
|
|
id string
|
|
target_accuracy int
|
|
epoch int
|
|
acuracy float64
|
|
}
|
|
|
|
type TraingModelRowDefinitions []TrainModelRow
|
|
|
|
func (nf TraingModelRowDefinitions) Len() int { return len(nf) }
|
|
func (nf TraingModelRowDefinitions) Swap(i, j int) { nf[i], nf[j] = nf[j], nf[i] }
|
|
func (nf TraingModelRowDefinitions) Less(i, j int) bool {
|
|
return nf[i].acuracy < nf[j].acuracy
|
|
}
|
|
|
|
type ToRemoveList []int
|
|
|
|
func (nf ToRemoveList) Len() int { return len(nf) }
|
|
func (nf ToRemoveList) Swap(i, j int) { nf[i], nf[j] = nf[j], nf[i] }
|
|
func (nf ToRemoveList) Less(i, j int) bool {
|
|
return nf[i] < nf[j]
|
|
}
|
|
|
|
func trainModel(c *Context, model *BaseModel) {
|
|
definitionsRows, err := c.Db.Query("select id, target_accuracy, epoch from model_definition where status=$1 and model_id=$2", MODEL_DEFINITION_STATUS_INIT, model.Id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to trainModel!Err:")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
defer definitionsRows.Close()
|
|
|
|
var definitions TraingModelRowDefinitions = []TrainModelRow{}
|
|
|
|
for definitionsRows.Next() {
|
|
var rowv TrainModelRow
|
|
rowv.acuracy = 0
|
|
if err = definitionsRows.Scan(&rowv.id, &rowv.target_accuracy, &rowv.epoch); err != nil {
|
|
c.Logger.Error("Failed to train Model Could not read definition from db!Err:")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
definitions = append(definitions, rowv)
|
|
}
|
|
|
|
if len(definitions) == 0 {
|
|
c.Logger.Error("No Definitions defined!")
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
firstRound := true
|
|
finished := false
|
|
|
|
for {
|
|
var toRemove ToRemoveList = []int{}
|
|
for i, def := range definitions {
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_TRAINING)
|
|
accuracy, err := trainDefinition(c, model, def.id, !firstRound)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:", "err", err)
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
toRemove = append(toRemove, i)
|
|
continue
|
|
}
|
|
def.epoch += EPOCH_PER_RUN
|
|
accuracy = accuracy * 100
|
|
def.acuracy = float64(accuracy)
|
|
|
|
definitions[i].epoch += EPOCH_PER_RUN
|
|
definitions[i].acuracy = accuracy
|
|
|
|
if accuracy >= float64(def.target_accuracy) {
|
|
c.Logger.Info("Found a definition that reaches target_accuracy!")
|
|
_, err = c.Db.Exec("update model_definition set accuracy=$1, status=$2, epoch=$3 where id=$4", accuracy, MODEL_DEFINITION_STATUS_TRANIED, def.epoch, def.id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
_, err = c.Db.Exec("update model_definition set status=$1 where id!=$2 and model_id=$3 and status!=$4", MODEL_DEFINITION_STATUS_CANCELD_TRAINING, def.id, model.Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
finished = true
|
|
break
|
|
}
|
|
|
|
if def.epoch > MAX_EPOCH {
|
|
fmt.Printf("Failed to train definition! Accuracy less %f < %d\n", accuracy, def.target_accuracy)
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
toRemove = append(toRemove, i)
|
|
continue
|
|
}
|
|
|
|
_, err = c.Db.Exec("update model_definition set accuracy=$1, epoch=$2, status=$3 where id=$4", accuracy, def.epoch, MODEL_DEFINITION_STATUS_PAUSED_TRAINING, def.id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
}
|
|
|
|
firstRound = false
|
|
if finished {
|
|
break
|
|
}
|
|
|
|
sort.Sort(sort.Reverse(toRemove))
|
|
|
|
c.Logger.Info("Round done", "toRemove", toRemove)
|
|
|
|
for _, n := range toRemove {
|
|
definitions = remove(definitions, n)
|
|
}
|
|
|
|
len_def := len(definitions)
|
|
|
|
if len_def == 0 {
|
|
break
|
|
}
|
|
|
|
if len_def == 1 {
|
|
continue
|
|
}
|
|
|
|
sort.Sort(sort.Reverse(definitions))
|
|
|
|
acc := definitions[0].acuracy - 20.0
|
|
|
|
c.Logger.Info("Training models, Highest acc", "acc", definitions[0].acuracy, "mod_acc", acc)
|
|
|
|
toRemove = []int{}
|
|
for i, def := range definitions {
|
|
if def.acuracy < acc {
|
|
toRemove = append(toRemove, i)
|
|
}
|
|
}
|
|
|
|
c.Logger.Info("Removing due to accuracy", "toRemove", toRemove)
|
|
|
|
sort.Sort(sort.Reverse(toRemove))
|
|
for _, n := range toRemove {
|
|
c.Logger.Warn("Removing definition not fast enough learning", "n", n)
|
|
ModelDefinitionUpdateStatus(c, definitions[n].id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
definitions = remove(definitions, n)
|
|
}
|
|
}
|
|
|
|
rows, err := c.Db.Query("select id from model_definition where model_id=$1 and status=$2 order by accuracy desc limit 1;", model.Id, MODEL_DEFINITION_STATUS_TRANIED)
|
|
if err != nil {
|
|
c.Logger.Error("DB: failed to read definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
// TODO Make the Model status have a message
|
|
c.Logger.Error("All definitions failed to train!")
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
var id string
|
|
if err = rows.Scan(&id); err != nil {
|
|
c.Logger.Error("Failed to read id:")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
if _, err = c.Db.Exec("update model_definition set status=$1 where id=$2;", MODEL_DEFINITION_STATUS_READY, id); err != nil {
|
|
c.Logger.Error("Failed to update model definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
to_delete, err := c.Db.Query("select id from model_definition where status != $1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to select model_definition to delete")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
defer to_delete.Close()
|
|
|
|
for to_delete.Next() {
|
|
var id string
|
|
if to_delete.Scan(&id); err != nil {
|
|
c.Logger.Error("Failed to scan the id of a model_definition to delete")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
os.RemoveAll(path.Join("savedData", model.Id, "defs", id))
|
|
}
|
|
|
|
// TODO Check if returning also works here
|
|
if _, err = c.Db.Exec("delete from model_definition where status!=$1 and model_id=$2;", MODEL_DEFINITION_STATUS_READY, model.Id); err != nil {
|
|
c.Logger.Error("Failed to delete model_definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
ModelUpdateStatus(c, model.Id, READY)
|
|
}
|
|
|
|
func trainModelExp(c *Context, model *BaseModel) {
|
|
var err error = nil
|
|
|
|
failed := func(msg string) {
|
|
c.Logger.Error(msg, "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
}
|
|
|
|
definitionsRows, err := c.Db.Query("select id, target_accuracy, epoch from model_definition where status=$1 and model_id=$2", MODEL_DEFINITION_STATUS_INIT, model.Id)
|
|
if err != nil {
|
|
failed("Failed to trainModel!")
|
|
return
|
|
}
|
|
defer definitionsRows.Close()
|
|
|
|
var definitions TraingModelRowDefinitions = []TrainModelRow{}
|
|
|
|
for definitionsRows.Next() {
|
|
var rowv TrainModelRow
|
|
rowv.acuracy = 0
|
|
if err = definitionsRows.Scan(&rowv.id, &rowv.target_accuracy, &rowv.epoch); err != nil {
|
|
c.Logger.Error("Failed to train Model Could not read definition from db!Err:")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
definitions = append(definitions, rowv)
|
|
}
|
|
|
|
if len(definitions) == 0 {
|
|
c.Logger.Error("No Definitions defined!")
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
firstRound := true
|
|
finished := false
|
|
|
|
for {
|
|
var toRemove ToRemoveList = []int{}
|
|
for i, def := range definitions {
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_TRAINING)
|
|
accuracy, err := trainDefinitionExp(c, model, def.id, !firstRound)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:", "err", err)
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
toRemove = append(toRemove, i)
|
|
continue
|
|
}
|
|
def.epoch += EPOCH_PER_RUN
|
|
accuracy = accuracy * 100
|
|
def.acuracy = float64(accuracy)
|
|
|
|
definitions[i].epoch += EPOCH_PER_RUN
|
|
definitions[i].acuracy = accuracy
|
|
|
|
if accuracy >= float64(def.target_accuracy) {
|
|
c.Logger.Info("Found a definition that reaches target_accuracy!")
|
|
_, err = c.Db.Exec("update model_definition set accuracy=$1, status=$2, epoch=$3 where id=$4", accuracy, MODEL_DEFINITION_STATUS_TRANIED, def.epoch, def.id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
_, err = c.Db.Exec("update model_definition set status=$1 where id!=$2 and model_id=$3 and status!=$4", MODEL_DEFINITION_STATUS_CANCELD_TRAINING, def.id, model.Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
finished = true
|
|
break
|
|
}
|
|
|
|
if def.epoch > MAX_EPOCH {
|
|
fmt.Printf("Failed to train definition! Accuracy less %f < %d\n", accuracy, def.target_accuracy)
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
toRemove = append(toRemove, i)
|
|
continue
|
|
}
|
|
|
|
_, err = c.Db.Exec("update model_definition set accuracy=$1, epoch=$2, status=$3 where id=$4", accuracy, def.epoch, MODEL_DEFINITION_STATUS_PAUSED_TRAINING, def.id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
}
|
|
|
|
firstRound = false
|
|
if finished {
|
|
break
|
|
}
|
|
|
|
sort.Sort(sort.Reverse(toRemove))
|
|
|
|
c.Logger.Info("Round done", "toRemove", toRemove)
|
|
|
|
for _, n := range toRemove {
|
|
definitions = remove(definitions, n)
|
|
}
|
|
|
|
len_def := len(definitions)
|
|
|
|
if len_def == 0 {
|
|
break
|
|
}
|
|
|
|
if len_def == 1 {
|
|
continue
|
|
}
|
|
|
|
sort.Sort(sort.Reverse(definitions))
|
|
|
|
acc := definitions[0].acuracy - 20.0
|
|
|
|
c.Logger.Info("Training models, Highest acc", "acc", definitions[0].acuracy, "mod_acc", acc)
|
|
|
|
toRemove = []int{}
|
|
for i, def := range definitions {
|
|
if def.acuracy < acc {
|
|
toRemove = append(toRemove, i)
|
|
}
|
|
}
|
|
|
|
c.Logger.Info("Removing due to accuracy", "toRemove", toRemove)
|
|
|
|
sort.Sort(sort.Reverse(toRemove))
|
|
for _, n := range toRemove {
|
|
c.Logger.Warn("Removing definition not fast enough learning", "n", n)
|
|
ModelDefinitionUpdateStatus(c, definitions[n].id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
definitions = remove(definitions, n)
|
|
}
|
|
}
|
|
|
|
rows, err := c.Db.Query("select id from model_definition where model_id=$1 and status=$2 order by accuracy desc limit 1;", model.Id, MODEL_DEFINITION_STATUS_TRANIED)
|
|
if err != nil {
|
|
c.Logger.Error("DB: failed to read definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
// TODO Make the Model status have a message
|
|
c.Logger.Error("All definitions failed to train!")
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
var id string
|
|
if err = rows.Scan(&id); err != nil {
|
|
c.Logger.Error("Failed to read id:")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
if _, err = c.Db.Exec("update model_definition set status=$1 where id=$2;", MODEL_DEFINITION_STATUS_READY, id); err != nil {
|
|
c.Logger.Error("Failed to update model definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
to_delete, err := c.Db.Query("select id from model_definition where status != $1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to select model_definition to delete")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
defer to_delete.Close()
|
|
|
|
for to_delete.Next() {
|
|
var id string
|
|
if to_delete.Scan(&id); err != nil {
|
|
c.Logger.Error("Failed to scan the id of a model_definition to delete")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
os.RemoveAll(path.Join("savedData", model.Id, "defs", id))
|
|
}
|
|
|
|
// TODO Check if returning also works here
|
|
if _, err = c.Db.Exec("delete from model_definition where status!=$1 and model_id=$2;", MODEL_DEFINITION_STATUS_READY, model.Id); err != nil {
|
|
c.Logger.Error("Failed to delete model_definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
ModelUpdateStatus(c, model.Id, READY)
|
|
}
|
|
|
|
func removeFailedDataPoints(c *Context, model *BaseModel) (err error) {
|
|
rows, err := c.Db.Query("select mdp.id from model_data_point as mdp join model_classes as mc on mc.id=mdp.class_id where mc.model_id=$1 and mdp.status=-1;", model.Id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
base_path := path.Join("savedData", model.Id, "data")
|
|
|
|
for rows.Next() {
|
|
var dataPointId string
|
|
err = rows.Scan(&dataPointId)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
p := path.Join(base_path, dataPointId+"."+model.Format)
|
|
|
|
c.Logger.Warn("Removing image", "path", p)
|
|
|
|
err = os.RemoveAll(p)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
_, err = c.Db.Exec("delete from model_data_point as mdp using model_classes as mc where mdp.class_id = mc.id and mc.model_id=$1 and mdp.status=-1;", model.Id)
|
|
return
|
|
}
|
|
|
|
// This generates a definition
|
|
func generateDefinition(c *Context, model *BaseModel, target_accuracy int, number_of_classes int, complexity int) *Error {
|
|
var err error = nil
|
|
failed := func() *Error {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
def_id, err := MakeDefenition(c.Db, model.Id, target_accuracy)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
order := 1
|
|
|
|
// Note the shape of the first layer defines the import size
|
|
if complexity == 2 {
|
|
// Note the shape for now is no used
|
|
width := int(math.Pow(2, math.Floor(math.Log(float64(model.Width))/math.Log(2.0))))
|
|
height := int(math.Pow(2, math.Floor(math.Log(float64(model.Height))/math.Log(2.0))))
|
|
c.Logger.Warn("Complexity 2 creating model with smaller size", "width", width, "height", height)
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_INPUT, fmt.Sprintf("%d,%d,1", width, height))
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
} else {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_INPUT, fmt.Sprintf("%d,%d,1", model.Width, model.Height))
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
}
|
|
|
|
if complexity == 0 {
|
|
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_FLATTEN, "")
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
|
|
loop := int(math.Log2(float64(number_of_classes)))
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
|
order++
|
|
if err != nil {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
}
|
|
|
|
} else if complexity == 1 || complexity == 2 {
|
|
|
|
loop := int((math.Log(float64(model.Width)) / math.Log(float64(10))))
|
|
if loop == 0 {
|
|
loop = 1
|
|
}
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_SIMPLE_BLOCK, "")
|
|
order++
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
}
|
|
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_FLATTEN, "")
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
|
|
loop = int((math.Log(float64(number_of_classes)) / math.Log(float64(10))) / 2)
|
|
if loop == 0 {
|
|
loop = 1
|
|
}
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
|
order++
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
}
|
|
} else {
|
|
c.Logger.Error("Unkown complexity", "complexity", complexity)
|
|
return failed()
|
|
}
|
|
|
|
err = ModelDefinitionUpdateStatus(c, def_id, MODEL_DEFINITION_STATUS_INIT)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func generateDefinitions(c *Context, model *BaseModel, target_accuracy int, number_of_models int) *Error {
|
|
cls, err := model_classes.ListClasses(c.Db, model.Id)
|
|
if err != nil {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
err = removeFailedDataPoints(c, model)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
cls_len := len(cls)
|
|
|
|
if number_of_models == 1 {
|
|
if model.Width < 100 && model.Height < 100 && cls_len < 30 {
|
|
generateDefinition(c, model, target_accuracy, cls_len, 0)
|
|
} else if model.Width > 100 && model.Height > 100 {
|
|
generateDefinition(c, model, target_accuracy, cls_len, 2)
|
|
} else {
|
|
generateDefinition(c, model, target_accuracy, cls_len, 1)
|
|
}
|
|
} else if number_of_models == 3 {
|
|
for i := 0; i < number_of_models; i++ {
|
|
generateDefinition(c, model, target_accuracy, cls_len, i)
|
|
}
|
|
} else {
|
|
// TODO handle incrisea the complexity
|
|
for i := 0; i < number_of_models; i++ {
|
|
generateDefinition(c, model, target_accuracy, cls_len, 0)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func CreateExpModelHead(c *Context, def_id string, range_start int, range_end int, status ModelDefinitionStatus) (id string, err error) {
|
|
rows, err := c.Db.Query("insert into exp_model_head (def_id, range_start, range_end) values ($1, $2, $3, $4) returning id", def_id, range_start, range_end, status)
|
|
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
c.Logger.Error("Could not get status of model definition")
|
|
err = errors.New("Could not get status of model definition")
|
|
return
|
|
}
|
|
|
|
err = rows.Scan(&id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func ExpModelHeadUpdateStatus(db *sql.DB, id string, status ModelDefinitionStatus) (err error) {
|
|
_, err = db.Exec("update model_definition set status = $1 where id = $2", status, id)
|
|
return
|
|
}
|
|
|
|
// This generates a definition
|
|
func generateExpandableDefinition(c *Context, model *BaseModel, target_accuracy int, number_of_classes int, complexity int) *Error {
|
|
var err error = nil
|
|
failed := func() *Error {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
if complexity == 0 {
|
|
return failed()
|
|
}
|
|
|
|
def_id, err := MakeDefenition(c.Db, model.Id, target_accuracy)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
order := 1
|
|
|
|
width := model.Width
|
|
height := model.Height
|
|
|
|
// Note the shape of the first layer defines the import size
|
|
if complexity == 2 {
|
|
// Note the shape for now is no used
|
|
width := int(math.Pow(2, math.Floor(math.Log(float64(model.Width))/math.Log(2.0))))
|
|
height := int(math.Pow(2, math.Floor(math.Log(float64(model.Height))/math.Log(2.0))))
|
|
c.Logger.Warn("Complexity 2 creating model with smaller size", "width", width, "height", height)
|
|
|
|
}
|
|
|
|
err = MakeLayerExpandable(c.Db, def_id, order, LAYER_INPUT, fmt.Sprintf("%d,%d,1", width, height), 1)
|
|
|
|
order++
|
|
|
|
// handle the errors inside the pervious if block
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
// Create the blocks
|
|
loop := int((math.Log(float64(model.Width)) / math.Log(float64(10))))
|
|
if loop == 0 {
|
|
loop = 1
|
|
}
|
|
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayerExpandable(c.Db, def_id, order, LAYER_SIMPLE_BLOCK, "", 1)
|
|
order++
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
}
|
|
|
|
// Flatten the blocks into dense
|
|
err = MakeLayerExpandable(c.Db, def_id, order, LAYER_FLATTEN, "", 1)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
|
|
// Flatten the blocks into dense
|
|
err = MakeLayerExpandable(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*2), 1)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
|
|
loop = int((math.Log(float64(number_of_classes)) / math.Log(float64(10))) / 2)
|
|
if loop == 0 {
|
|
loop = 1
|
|
}
|
|
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
|
order++
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
}
|
|
|
|
_, err = CreateExpModelHead(c, def_id, 0, number_of_classes-1, MODEL_DEFINITION_STATUS_INIT)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
err = ModelDefinitionUpdateStatus(c, def_id, MODEL_DEFINITION_STATUS_INIT)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func generateExpandableDefinitions(c *Context, model *BaseModel, target_accuracy int, number_of_models int) *Error {
|
|
cls, err := model_classes.ListClasses(c.Db, model.Id)
|
|
if err != nil {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
err = removeFailedDataPoints(c, model)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
cls_len := len(cls)
|
|
|
|
if number_of_models == 1 {
|
|
if model.Width > 100 && model.Height > 100 {
|
|
generateExpandableDefinition(c, model, target_accuracy, cls_len, 2)
|
|
} else {
|
|
generateExpandableDefinition(c, model, target_accuracy, cls_len, 1)
|
|
}
|
|
} else if number_of_models == 3 {
|
|
for i := 0; i < number_of_models; i++ {
|
|
generateExpandableDefinition(c, model, target_accuracy, cls_len, i)
|
|
}
|
|
} else {
|
|
// TODO handle incrisea the complexity
|
|
for i := 0; i < number_of_models; i++ {
|
|
generateExpandableDefinition(c, model, target_accuracy, cls_len, 1)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func handleTrain(handle *Handle) {
|
|
handle.Post("/models/train", func(w http.ResponseWriter, r *http.Request, c *Context) *Error {
|
|
if !CheckAuthLevel(1, w, r, c) {
|
|
return nil
|
|
}
|
|
if c.Mode == JSON {
|
|
panic("TODO /models/train JSON")
|
|
}
|
|
|
|
r.ParseForm()
|
|
f := r.Form
|
|
|
|
number_of_models := 0
|
|
accuracy := 0
|
|
|
|
if !CheckId(f, "id") || CheckEmpty(f, "model_type") || !CheckNumber(f, "number_of_models", &number_of_models) || !CheckNumber(f, "accuracy", &accuracy) {
|
|
// TODO improve this response
|
|
return ErrorCode(nil, 400, c.AddMap(nil))
|
|
}
|
|
|
|
id := f.Get("id")
|
|
model_type_id := 1
|
|
model_type_form := f.Get("model_type")
|
|
|
|
if model_type_form == "expandable" {
|
|
model_type_id = 2
|
|
c.Logger.Warn("TODO: handle expandable")
|
|
return c.Error400(nil, "TODO: handle expandable!", w, "/models/edit.html", "train-model-card", AnyMap{
|
|
"HasData": true,
|
|
"ErrorMessage": "TODO: handle expandable!",
|
|
})
|
|
} else if model_type_form != "simple" {
|
|
return c.Error400(nil, "Invalid model type!", w, "/models/edit.html", "train-model-card", AnyMap{
|
|
"HasData": true,
|
|
"ErrorMessage": "Invalid model type!",
|
|
})
|
|
}
|
|
|
|
model, err := GetBaseModel(handle.Db, id)
|
|
if err == ModelNotFoundError {
|
|
return ErrorCode(nil, http.StatusNotFound, c.AddMap(AnyMap{
|
|
"NotFoundMessage": "Model not found",
|
|
"GoBackLink": "/models",
|
|
}))
|
|
} else if err != nil {
|
|
// TODO improve this response
|
|
return Error500(err)
|
|
}
|
|
|
|
if model.Status != CONFIRM_PRE_TRAINING {
|
|
// TODO improve this response
|
|
return ErrorCode(nil, 400, c.AddMap(nil))
|
|
}
|
|
|
|
if model_type_id == 2 {
|
|
full_error := generateExpandableDefinitions(c, model, accuracy, number_of_models)
|
|
if full_error != nil {
|
|
return full_error
|
|
}
|
|
} else {
|
|
full_error := generateDefinitions(c, model, accuracy, number_of_models)
|
|
if full_error != nil {
|
|
return full_error
|
|
}
|
|
}
|
|
|
|
if model_type_id == 2 {
|
|
go trainModelExp(c, model)
|
|
} else {
|
|
go trainModel(c, model)
|
|
}
|
|
|
|
_, err = c.Db.Exec("update models set status = $1, model_type = $2 where id = $3", TRAINING, model_type_id, model.Id)
|
|
if err != nil {
|
|
fmt.Println("Failed to update model status")
|
|
fmt.Println(err)
|
|
// TODO improve this response
|
|
return Error500(err)
|
|
}
|
|
Redirect("/models/edit?id="+model.Id, c.Mode, w, r)
|
|
return nil
|
|
})
|
|
|
|
handle.Get("/model/epoch/update", func(w http.ResponseWriter, r *http.Request, c *Context) *Error {
|
|
// TODO check auth level
|
|
if c.Mode != NORMAL {
|
|
// This should only handle normal requests
|
|
c.Logger.Warn("This function only works with normal")
|
|
return c.UnsafeErrorCode(nil, 400, nil)
|
|
}
|
|
|
|
f := r.URL.Query()
|
|
|
|
accuracy := 0.0
|
|
|
|
if !CheckId(f, "model_id") || !CheckId(f, "definition") || CheckEmpty(f, "epoch") || !CheckFloat64(f, "accuracy", &accuracy) {
|
|
c.Logger.Warn("Invalid: model_id or definition or epoch or accuracy")
|
|
return c.UnsafeErrorCode(nil, 400, nil)
|
|
}
|
|
|
|
accuracy = accuracy * 100
|
|
|
|
model_id := f.Get("model_id")
|
|
def_id := f.Get("definition")
|
|
epoch, err := strconv.Atoi(f.Get("epoch"))
|
|
if err != nil {
|
|
c.Logger.Warn("Epoch is not a number")
|
|
// No need to improve message because this function is only called internaly
|
|
return c.UnsafeErrorCode(nil, 400, nil)
|
|
}
|
|
|
|
rows, err := c.Db.Query("select md.status from model_definition as md where md.model_id=$1 and md.id=$2", model_id, def_id)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
c.Logger.Error("Could not get status of model definition")
|
|
return c.Error500(nil)
|
|
}
|
|
|
|
var status int
|
|
err = rows.Scan(&status)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
if status != 3 {
|
|
c.Logger.Warn("Definition not on status 3(training)", "status", status)
|
|
// No need to improve message because this function is only called internaly
|
|
return c.UnsafeErrorCode(nil, 400, nil)
|
|
}
|
|
|
|
c.Logger.Info("Updated model_definition!", "model", model_id, "progress", epoch, "accuracy", accuracy)
|
|
|
|
_, err = c.Db.Exec("update model_definition set epoch_progress=$1, accuracy=$2 where id=$3", epoch, accuracy, def_id)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
return nil
|
|
})
|
|
}
|