This commit is contained in:
parent
3ba9a63d96
commit
bbe07d7a4b
10
cw/cw.tex
10
cw/cw.tex
@ -116,7 +116,7 @@
|
|||||||
I used factorization to obtain the private key. After obtaining the private key, I can decrypt the cipher text and obtain "handlebars''
|
I used factorization to obtain the private key. After obtaining the private key, I can decrypt the cipher text and obtain "handlebars''
|
||||||
|
|
||||||
\subsection*{3.3}
|
\subsection*{3.3}
|
||||||
I used the general number sieve to factorize\cite{cadonfs} to factorize the public modulus and obtained:
|
I used the general number sieve\cite{cadonfs} to factorize the public modulus and obtained:
|
||||||
$$p=112546167358047505471958486197519319605436748416824057782825895564365669780011$$
|
$$p=112546167358047505471958486197519319605436748416824057782825895564365669780011$$
|
||||||
and
|
and
|
||||||
$$q=65802972772386034028625679514602920156340140357656235951559577501150333990623$$
|
$$q=65802972772386034028625679514602920156340140357656235951559577501150333990623$$
|
||||||
@ -253,9 +253,9 @@
|
|||||||
|
|
||||||
which means that
|
which means that
|
||||||
|
|
||||||
$$(((m^{r_{a\text{ alice}}})^{r_{a\text{ bob}}})^{r_{b\text{ alice}}})^{r_{b\text{ bob}}} = m (\text{mod } p)$$
|
$$(((m^{r_{a1}})^{r_{b1}})^{r_{a2}})^{r_{b2}} = m (\text{mod } p)$$
|
||||||
|
|
||||||
in this case, $r_a$ from Alice cancels $r_b$ from Alice, and $r_a$ from Bob cancels $r_b$ from Bob.
|
in this case, $r_{a1}$ from Alice cancels $r_{a2}$ from Alice, and $r_{b1}$ from Bob cancels $r_{b2}$ from Bob.
|
||||||
|
|
||||||
\subsubsection*{6.3.2}
|
\subsubsection*{6.3.2}
|
||||||
To send an encrypted message using this system between 2 people, i.e. Alice and Bob:
|
To send an encrypted message using this system between 2 people, i.e. Alice and Bob:
|
||||||
@ -303,9 +303,13 @@
|
|||||||
|
|
||||||
$$=\frac{\sqrt{92699}}{9427678922^{\frac{1}{4}}}\approx0.977094\approx0.98$$
|
$$=\frac{\sqrt{92699}}{9427678922^{\frac{1}{4}}}\approx0.977094\approx0.98$$
|
||||||
|
|
||||||
|
The Hadamard ration for the private bias is $0.98$
|
||||||
|
|
||||||
$$H(U)=(\frac{det(L)}{\|u1\|\times\|u2\|})^\frac{1}{n}=(\frac{92699}{\sqrt{u1_1^2 + u1_2^2}\times\sqrt{u2_1^2 + u2_2^2}})^\frac{1}{2}=$$
|
$$H(U)=(\frac{det(L)}{\|u1\|\times\|u2\|})^\frac{1}{n}=(\frac{92699}{\sqrt{u1_1^2 + u1_2^2}\times\sqrt{u2_1^2 + u2_2^2}})^\frac{1}{2}=$$
|
||||||
$$=\frac{\sqrt{92699}}{243990681350077^{\frac{1}{4}}}\approx0.0770361\approx0.077$$
|
$$=\frac{\sqrt{92699}}{243990681350077^{\frac{1}{4}}}\approx0.0770361\approx0.077$$
|
||||||
|
|
||||||
|
The Hadamard ration for the public bias is $0.077$
|
||||||
|
|
||||||
B:
|
B:
|
||||||
$$w = (30548, 6642)$$
|
$$w = (30548, 6642)$$
|
||||||
$$\begin{cases}
|
$$\begin{cases}
|
||||||
|
Reference in New Issue
Block a user