From bbe07d7a4be5822909bfdadd6073ad9ac023f736 Mon Sep 17 00:00:00 2001 From: Andre Henriques Date: Tue, 14 Nov 2023 17:45:23 +0000 Subject: [PATCH] Fix small errors --- cw/cw.tex | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/cw/cw.tex b/cw/cw.tex index b0f4ffc..503d52a 100644 --- a/cw/cw.tex +++ b/cw/cw.tex @@ -116,7 +116,7 @@ I used factorization to obtain the private key. After obtaining the private key, I can decrypt the cipher text and obtain "handlebars'' \subsection*{3.3} - I used the general number sieve to factorize\cite{cadonfs} to factorize the public modulus and obtained: + I used the general number sieve\cite{cadonfs} to factorize the public modulus and obtained: $$p=112546167358047505471958486197519319605436748416824057782825895564365669780011$$ and $$q=65802972772386034028625679514602920156340140357656235951559577501150333990623$$ @@ -253,9 +253,9 @@ which means that - $$(((m^{r_{a\text{ alice}}})^{r_{a\text{ bob}}})^{r_{b\text{ alice}}})^{r_{b\text{ bob}}} = m (\text{mod } p)$$ + $$(((m^{r_{a1}})^{r_{b1}})^{r_{a2}})^{r_{b2}} = m (\text{mod } p)$$ - in this case, $r_a$ from Alice cancels $r_b$ from Alice, and $r_a$ from Bob cancels $r_b$ from Bob. + in this case, $r_{a1}$ from Alice cancels $r_{a2}$ from Alice, and $r_{b1}$ from Bob cancels $r_{b2}$ from Bob. \subsubsection*{6.3.2} To send an encrypted message using this system between 2 people, i.e. Alice and Bob: @@ -303,9 +303,13 @@ $$=\frac{\sqrt{92699}}{9427678922^{\frac{1}{4}}}\approx0.977094\approx0.98$$ + The Hadamard ration for the private bias is $0.98$ + $$H(U)=(\frac{det(L)}{\|u1\|\times\|u2\|})^\frac{1}{n}=(\frac{92699}{\sqrt{u1_1^2 + u1_2^2}\times\sqrt{u2_1^2 + u2_2^2}})^\frac{1}{2}=$$ $$=\frac{\sqrt{92699}}{243990681350077^{\frac{1}{4}}}\approx0.0770361\approx0.077$$ + The Hadamard ration for the public bias is $0.077$ + B: $$w = (30548, 6642)$$ $$\begin{cases}