feat: add tasks closes #74
This commit is contained in:
@@ -1,12 +1,12 @@
|
||||
package models
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"io"
|
||||
"errors"
|
||||
"os"
|
||||
"path"
|
||||
|
||||
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/utils"
|
||||
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/tasks/utils"
|
||||
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/utils"
|
||||
|
||||
tf "github.com/galeone/tensorflow/tensorflow/go"
|
||||
@@ -35,7 +35,7 @@ func ReadJPG(scope *op.Scope, imagePath string, channels int64) *image.Image {
|
||||
return image.Scale(0, 255)
|
||||
}
|
||||
|
||||
func runModelNormal(c *Context, model *BaseModel, def_id string, inputImage *tf.Tensor) (order int, confidence float32, err error) {
|
||||
func runModelNormal(base BasePack, model *BaseModel, def_id string, inputImage *tf.Tensor) (order int, confidence float32, err error) {
|
||||
order = 0
|
||||
err = nil
|
||||
|
||||
@@ -62,7 +62,7 @@ func runModelNormal(c *Context, model *BaseModel, def_id string, inputImage *tf.
|
||||
return
|
||||
}
|
||||
|
||||
func runModelExp(c *Context, model *BaseModel, def_id string, inputImage *tf.Tensor) (order int, confidence float32, err error) {
|
||||
func runModelExp(base BasePack, model *BaseModel, def_id string, inputImage *tf.Tensor) (order int, confidence float32, err error) {
|
||||
|
||||
err = nil
|
||||
order = 0
|
||||
@@ -82,12 +82,12 @@ func runModelExp(c *Context, model *BaseModel, def_id string, inputImage *tf.Ten
|
||||
Range_start int
|
||||
}
|
||||
|
||||
heads, err := GetDbMultitple[head](c, "exp_model_head where def_id=$1;", def_id)
|
||||
heads, err := GetDbMultitple[head](base.GetDb(), "exp_model_head where def_id=$1;", def_id)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
c.Logger.Info("test", "count", len(heads))
|
||||
base.GetLogger().Info("test", "count", len(heads))
|
||||
|
||||
var vmax float32 = 0.0
|
||||
|
||||
@@ -102,9 +102,8 @@ func runModelExp(c *Context, model *BaseModel, def_id string, inputImage *tf.Ten
|
||||
|
||||
var predictions = results[0].Value().([][]float32)[0]
|
||||
|
||||
|
||||
for i, v := range predictions {
|
||||
c.Logger.Info("predictions", "class", i, "preds", v)
|
||||
base.GetLogger().Debug("predictions", "class", i, "preds", v)
|
||||
if v > vmax {
|
||||
order = element.Range_start + i
|
||||
vmax = v
|
||||
@@ -115,139 +114,105 @@ func runModelExp(c *Context, model *BaseModel, def_id string, inputImage *tf.Ten
|
||||
// TODO runthe head model
|
||||
confidence = vmax
|
||||
|
||||
c.Logger.Info("Got", "heads", len(heads), "order", order, "vmax", vmax)
|
||||
base.GetLogger().Debug("Got", "heads", len(heads), "order", order, "vmax", vmax)
|
||||
return
|
||||
}
|
||||
|
||||
func handleRun(handle *Handle) {
|
||||
handle.Post("/models/run", func(c *Context) *Error {
|
||||
if !c.CheckAuthLevel(1) {
|
||||
return nil
|
||||
}
|
||||
func ClassifyTask(base BasePack, task Task) (err error) {
|
||||
task.UpdateStatusLog(base, TASK_RUNNING, "Runner running task")
|
||||
|
||||
read_form, err := c.R.MultipartReader()
|
||||
model, err := GetBaseModel(base.GetDb(), task.ModelId)
|
||||
if err != nil {
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to obtain the model")
|
||||
return err
|
||||
}
|
||||
|
||||
if !model.CanEval() {
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to obtain the model")
|
||||
return errors.New("Model not in the right state for evaluation")
|
||||
}
|
||||
|
||||
def := JustId{}
|
||||
err = GetDBOnce(base.GetDb(), &def, "model_definition where model_id=$1", model.Id)
|
||||
if err != nil {
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to obtain the model")
|
||||
return
|
||||
}
|
||||
|
||||
def_id := def.Id
|
||||
|
||||
// TODO create a database table with tasks
|
||||
run_path := path.Join("/tmp", model.Id, "runs")
|
||||
os.MkdirAll(run_path, os.ModePerm)
|
||||
|
||||
img_path := path.Join("savedData", model.Id, "tasks", task.Id+"."+model.Format)
|
||||
|
||||
root := tg.NewRoot()
|
||||
|
||||
var tf_img *image.Image = nil
|
||||
|
||||
switch model.Format {
|
||||
case "png":
|
||||
tf_img = ReadPNG(root, img_path, int64(model.ImageMode))
|
||||
case "jpeg":
|
||||
tf_img = ReadJPG(root, img_path, int64(model.ImageMode))
|
||||
default:
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to obtain the model")
|
||||
}
|
||||
|
||||
exec_results := tg.Exec(root, []tf.Output{tf_img.Value()}, nil, &tf.SessionOptions{})
|
||||
inputImage, err := tf.NewTensor(exec_results[0].Value())
|
||||
if err != nil {
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to run model")
|
||||
return
|
||||
}
|
||||
|
||||
vi := -1
|
||||
var confidence float32 = 0
|
||||
|
||||
if model.ModelType == 2 {
|
||||
base.GetLogger().Info("Running model normal", "model", model.Id, "def", def_id)
|
||||
vi, confidence, err = runModelExp(base, model, def_id, inputImage)
|
||||
if err != nil {
|
||||
return c.JsonBadRequest("Invalid muilpart body")
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to run model")
|
||||
return
|
||||
}
|
||||
|
||||
var id string
|
||||
var file []byte
|
||||
|
||||
for {
|
||||
part, err_part := read_form.NextPart()
|
||||
if err_part == io.EOF {
|
||||
break
|
||||
} else if err_part != nil {
|
||||
return c.JsonBadRequest("Invalid multipart data")
|
||||
}
|
||||
if part.FormName() == "id" {
|
||||
buf := new(bytes.Buffer)
|
||||
buf.ReadFrom(part)
|
||||
id = buf.String()
|
||||
}
|
||||
if part.FormName() == "file" {
|
||||
buf := new(bytes.Buffer)
|
||||
buf.ReadFrom(part)
|
||||
file = buf.Bytes()
|
||||
}
|
||||
}
|
||||
|
||||
model, err := GetBaseModel(handle.Db, id)
|
||||
if err == ModelNotFoundError {
|
||||
return c.JsonBadRequest("Models not found")
|
||||
} else if err != nil {
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
if model.Status != READY && model.Status != READY_RETRAIN && model.Status != READY_RETRAIN_FAILED && model.Status != READY_ALTERATION && model.Status != READY_ALTERATION_FAILED {
|
||||
return c.JsonBadRequest("Model not ready to run images")
|
||||
}
|
||||
|
||||
def := JustId{}
|
||||
err = GetDBOnce(c, &def, "model_definition where model_id=$1", model.Id)
|
||||
if err == NotFoundError {
|
||||
return c.JsonBadRequest("Could not find definition")
|
||||
} else if err != nil {
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
def_id := def.Id
|
||||
|
||||
// TODO create a database table with tasks
|
||||
run_path := path.Join("/tmp", model.Id, "runs")
|
||||
os.MkdirAll(run_path, os.ModePerm)
|
||||
img_path := path.Join(run_path, "img."+model.Format)
|
||||
|
||||
img_file, err := os.Create(img_path)
|
||||
} else {
|
||||
base.GetLogger().Info("Running model normal", "model", model.Id, "def", def_id)
|
||||
vi, confidence, err = runModelNormal(base, model, def_id, inputImage)
|
||||
if err != nil {
|
||||
return c.Error500(err)
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to run model")
|
||||
return
|
||||
}
|
||||
defer img_file.Close()
|
||||
img_file.Write(file)
|
||||
}
|
||||
|
||||
if !testImgForModel(c, model, img_path) {
|
||||
return c.JsonBadRequest("Provided image does not match the model")
|
||||
}
|
||||
var GetName struct {
|
||||
Name string
|
||||
Id string
|
||||
}
|
||||
err = GetDBOnce(base.GetDb(), &GetName, "model_classes where model_id=$1 and class_order=$2;", model.Id, vi)
|
||||
if err != nil {
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to obtain model results")
|
||||
return
|
||||
}
|
||||
|
||||
root := tg.NewRoot()
|
||||
returnValue := struct {
|
||||
ClassId string `json:"class_id"`
|
||||
Class string `json:"class"`
|
||||
Confidence float32 `json:"confidence"`
|
||||
}{
|
||||
Class: GetName.Name,
|
||||
ClassId: GetName.Id,
|
||||
Confidence: confidence,
|
||||
}
|
||||
|
||||
var tf_img *image.Image = nil
|
||||
err = task.SetResult(base, returnValue)
|
||||
if err != nil {
|
||||
task.UpdateStatusLog(base, TASK_FAILED_RUNNING, "Failed to save model results")
|
||||
return
|
||||
}
|
||||
|
||||
switch model.Format {
|
||||
case "png":
|
||||
tf_img = ReadPNG(root, img_path, int64(model.ImageMode))
|
||||
case "jpeg":
|
||||
tf_img = ReadJPG(root, img_path, int64(model.ImageMode))
|
||||
default:
|
||||
panic("Not sure what to do with '" + model.Format + "'")
|
||||
}
|
||||
task.UpdateStatusLog(base, TASK_DONE, "Model ran successfully")
|
||||
|
||||
exec_results := tg.Exec(root, []tf.Output{tf_img.Value()}, nil, &tf.SessionOptions{})
|
||||
inputImage, err := tf.NewTensor(exec_results[0].Value())
|
||||
if err != nil {
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
vi := -1
|
||||
var confidence float32 = 0
|
||||
|
||||
if model.ModelType == 2 {
|
||||
c.Logger.Info("Running model normal", "model", model.Id, "def", def_id)
|
||||
vi, confidence, err = runModelExp(c, model, def_id, inputImage)
|
||||
if err != nil {
|
||||
return c.Error500(err)
|
||||
}
|
||||
} else {
|
||||
c.Logger.Info("Running model normal", "model", model.Id, "def", def_id)
|
||||
vi, confidence, err = runModelNormal(c, model, def_id, inputImage)
|
||||
if err != nil {
|
||||
return c.Error500(err)
|
||||
}
|
||||
}
|
||||
|
||||
os.RemoveAll(run_path)
|
||||
|
||||
rows, err := handle.Db.Query("select name from model_classes where model_id=$1 and class_order=$2;", model.Id, vi)
|
||||
if err != nil {
|
||||
return c.Error500(err)
|
||||
}
|
||||
if !rows.Next() {
|
||||
return c.SendJSON(nil)
|
||||
}
|
||||
|
||||
var name string
|
||||
if err = rows.Scan(&name); err != nil {
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
returnValue := struct {
|
||||
Class string `json:"class"`
|
||||
Confidence float32 `json:"confidence"`
|
||||
}{
|
||||
Class: name,
|
||||
Confidence: confidence,
|
||||
}
|
||||
|
||||
return c.SendJSON(returnValue)
|
||||
})
|
||||
return
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user