zls/src/document_store.zig

717 lines
26 KiB
Zig

const std = @import("std");
const types = @import("types.zig");
const URI = @import("uri.zig");
const analysis = @import("analysis.zig");
const DocumentStore = @This();
const BuildFile = struct {
const Pkg = struct {
name: []const u8,
uri: []const u8,
};
refs: usize,
uri: []const u8,
packages: std.ArrayListUnmanaged(Pkg),
};
pub const Handle = struct {
document: types.TextDocument,
count: usize,
import_uris: std.ArrayList([]const u8),
tree: *std.zig.ast.Tree,
associated_build_file: ?*BuildFile,
is_build_file: ?*BuildFile,
pub fn uri(handle: Handle) []const u8 {
return handle.document.uri;
}
};
pub const TagStore = struct {
values: std.StringHashMap(void),
completions: std.ArrayListUnmanaged(types.CompletionItem),
pub fn init(allocator: *std.mem.Allocator) TagStore {
return .{
.values = std.StringHashMap(void).init(allocator),
.completions = .{},
};
}
pub fn deinit(self: *TagStore) void {
const alloc = self.values.allocator;
for (self.completions.items) |item| {
alloc.free(item.label);
if (item.documentation) |some| alloc.free(some.value);
}
self.values.deinit();
self.completions.deinit(self.values.allocator);
}
pub fn add(self: *TagStore, tree: *std.zig.ast.Tree, tag: *std.zig.ast.Node) !void {
const name = analysis.nodeToString(tree, tag).?;
if (self.values.contains(name)) return;
const alloc = self.values.allocator;
const item = types.CompletionItem{
.label = try std.mem.dupe(alloc, u8, name),
.kind = .Constant,
.documentation = if (try analysis.getDocComments(alloc, tree, tag)) |docs|
.{
.kind = .Markdown,
.value = docs,
}
else
null,
};
try self.values.putNoClobber(item.label, {});
try self.completions.append(self.values.allocator, item);
}
};
allocator: *std.mem.Allocator,
handles: std.StringHashMap(*Handle),
zig_exe_path: ?[]const u8,
build_files: std.ArrayListUnmanaged(*BuildFile),
build_runner_path: []const u8,
error_completions: TagStore,
enum_completions: TagStore,
pub fn init(
self: *DocumentStore,
allocator: *std.mem.Allocator,
zig_exe_path: ?[]const u8,
build_runner_path: []const u8,
) !void {
self.allocator = allocator;
self.handles = std.StringHashMap(*Handle).init(allocator);
self.zig_exe_path = zig_exe_path;
self.build_files = .{};
self.build_runner_path = build_runner_path;
self.error_completions = TagStore.init(allocator);
self.enum_completions = TagStore.init(allocator);
}
const LoadPackagesContext = struct {
build_file: *BuildFile,
allocator: *std.mem.Allocator,
build_runner_path: []const u8,
zig_exe_path: []const u8,
};
fn loadPackages(context: LoadPackagesContext) !void {
const allocator = context.allocator;
const build_file = context.build_file;
const build_runner_path = context.build_runner_path;
const zig_exe_path = context.zig_exe_path;
const directory_path = try URI.parse(allocator, build_file.uri[0 .. build_file.uri.len - "build.zig".len]);
defer allocator.free(directory_path);
const target_path = try std.fs.path.resolve(allocator, &[_][]const u8{ directory_path, "build_runner.zig" });
defer allocator.free(target_path);
// For example, instead of testing if a file exists and then opening it, just
// open it and handle the error for file not found.
var file_exists = true;
check_file_exists: {
var fhandle = std.fs.cwd().openFile(target_path, .{ .read = true, .write = false }) catch |err| switch (err) {
error.FileNotFound => {
file_exists = false;
break :check_file_exists;
},
else => break :check_file_exists,
};
fhandle.close();
}
if (file_exists) return error.BuildRunnerFileExists;
try std.fs.copyFileAbsolute(build_runner_path, target_path, .{});
defer std.fs.deleteFileAbsolute(target_path) catch {};
const zig_run_result = try std.ChildProcess.exec(.{
.allocator = allocator,
.argv = &[_][]const u8{ zig_exe_path, "run", "build_runner.zig" },
.cwd = directory_path,
});
defer {
allocator.free(zig_run_result.stdout);
allocator.free(zig_run_result.stderr);
}
switch (zig_run_result.term) {
.Exited => |exit_code| {
if (exit_code == 0) {
std.debug.warn("Finished zig run for build file {}\n", .{build_file.uri});
for (build_file.packages.items) |old_pkg| {
allocator.free(old_pkg.name);
allocator.free(old_pkg.uri);
}
build_file.packages.shrink(allocator, 0);
var line_it = std.mem.split(zig_run_result.stdout, "\n");
while (line_it.next()) |line| {
if (std.mem.indexOfScalar(u8, line, '\x00')) |zero_byte_idx| {
const name = line[0..zero_byte_idx];
const rel_path = line[zero_byte_idx + 1 ..];
const pkg_abs_path = try std.fs.path.resolve(allocator, &[_][]const u8{ directory_path, rel_path });
defer allocator.free(pkg_abs_path);
const pkg_uri = try URI.fromPath(allocator, pkg_abs_path);
errdefer allocator.free(pkg_uri);
const duped_name = try std.mem.dupe(allocator, u8, name);
errdefer allocator.free(duped_name);
(try build_file.packages.addOne(allocator)).* = .{
.name = duped_name,
.uri = pkg_uri,
};
}
}
}
},
else => return error.RunFailed,
}
}
/// This function asserts the document is not open yet and takes ownership
/// of the uri and text passed in.
fn newDocument(self: *DocumentStore, uri: []const u8, text: []u8) anyerror!*Handle {
std.debug.warn("Opened document: {}\n", .{uri});
var handle = try self.allocator.create(Handle);
errdefer self.allocator.destroy(handle);
handle.* = Handle{
.count = 1,
.import_uris = std.ArrayList([]const u8).init(self.allocator),
.document = .{
.uri = uri,
.text = text,
.mem = text,
},
.tree = try std.zig.parse(self.allocator, text),
.associated_build_file = null,
.is_build_file = null,
};
// TODO: Better logic for detecting std or subdirectories?
const in_std = std.mem.indexOf(u8, uri, "/std/") != null;
if (self.zig_exe_path != null and std.mem.endsWith(u8, uri, "/build.zig") and !in_std) {
std.debug.warn("Document is a build file, extracting packages...\n", .{});
// This is a build file.
var build_file = try self.allocator.create(BuildFile);
errdefer self.allocator.destroy(build_file);
build_file.* = .{
.refs = 1,
.uri = try std.mem.dupe(self.allocator, u8, uri),
.packages = .{},
};
try self.build_files.append(self.allocator, build_file);
handle.is_build_file = build_file;
// TODO: Do this in a separate thread?
// It can take quite long.
loadPackages(.{
.build_file = build_file,
.allocator = self.allocator,
.build_runner_path = self.build_runner_path,
.zig_exe_path = self.zig_exe_path.?,
}) catch |err| {
std.debug.warn("Failed to load packages of build file {} (error: {})\n", .{ build_file.uri, err });
};
} else if (self.zig_exe_path != null and !in_std) associate_build_file: {
// Look into build files to see if we already have one that fits
for (self.build_files.items) |build_file| {
const build_file_base_uri = build_file.uri[0 .. std.mem.lastIndexOfScalar(u8, build_file.uri, '/').? + 1];
if (std.mem.startsWith(u8, uri, build_file_base_uri)) {
std.debug.warn("Found an associated build file: {}\n", .{build_file.uri});
build_file.refs += 1;
handle.associated_build_file = build_file;
break :associate_build_file;
}
}
// Otherwise, try to find a build file.
var curr_path = try URI.parse(self.allocator, uri);
defer self.allocator.free(curr_path);
while (true) {
if (curr_path.len == 0) break :associate_build_file;
if (std.mem.lastIndexOfScalar(u8, curr_path[0 .. curr_path.len - 1], std.fs.path.sep)) |idx| {
// This includes the last separator
curr_path = curr_path[0 .. idx + 1];
var candidate_path = try std.mem.concat(self.allocator, u8, &[_][]const u8{ curr_path, "build.zig" });
defer self.allocator.free(candidate_path);
// Try to open the file, read it and add the new document if we find it.
var file = std.fs.cwd().openFile(candidate_path, .{ .read = true, .write = false }) catch continue;
defer file.close();
const build_file_text = try file.inStream().readAllAlloc(self.allocator, std.math.maxInt(usize));
errdefer self.allocator.free(build_file_text);
const build_file_uri = try URI.fromPath(self.allocator, candidate_path);
errdefer self.allocator.free(build_file_uri);
const build_file_handle = try self.newDocument(build_file_uri, build_file_text);
handle.associated_build_file = build_file_handle.is_build_file;
break;
} else break :associate_build_file;
}
}
try self.handles.putNoClobber(uri, handle);
return handle;
}
pub fn openDocument(self: *DocumentStore, uri: []const u8, text: []const u8) !*Handle {
if (self.handles.get(uri)) |entry| {
std.debug.warn("Document already open: {}, incrementing count\n", .{uri});
entry.value.count += 1;
if (entry.value.is_build_file) |build_file| {
build_file.refs += 1;
}
std.debug.warn("New count: {}\n", .{entry.value.count});
return entry.value;
}
const duped_text = try std.mem.dupe(self.allocator, u8, text);
errdefer self.allocator.free(duped_text);
const duped_uri = try std.mem.dupe(self.allocator, u8, uri);
errdefer self.allocator.free(duped_uri);
return try self.newDocument(duped_uri, duped_text);
}
fn decrementBuildFileRefs(self: *DocumentStore, build_file: *BuildFile) void {
build_file.refs -= 1;
if (build_file.refs == 0) {
std.debug.warn("Freeing build file {}\n", .{build_file.uri});
for (build_file.packages.items) |pkg| {
self.allocator.free(pkg.name);
self.allocator.free(pkg.uri);
}
build_file.packages.deinit(self.allocator);
// Decrement count of the document since one count comes
// from the build file existing.
self.decrementCount(build_file.uri);
self.allocator.free(build_file.uri);
// Remove the build file from the array list
_ = self.build_files.swapRemove(std.mem.indexOfScalar(*BuildFile, self.build_files.items, build_file).?);
self.allocator.destroy(build_file);
}
}
fn decrementCount(self: *DocumentStore, uri: []const u8) void {
if (self.handles.get(uri)) |entry| {
entry.value.count -= 1;
if (entry.value.associated_build_file) |build_file| {
self.decrementBuildFileRefs(build_file);
}
if (entry.value.count > 0)
return;
std.debug.warn("Freeing document: {}\n", .{uri});
entry.value.tree.deinit();
self.allocator.free(entry.value.document.mem);
for (entry.value.import_uris.items) |import_uri| {
self.decrementCount(import_uri);
self.allocator.free(import_uri);
}
entry.value.import_uris.deinit();
self.allocator.destroy(entry.value);
const uri_key = entry.key;
self.handles.removeAssertDiscard(uri);
self.allocator.free(uri_key);
}
}
pub fn closeDocument(self: *DocumentStore, uri: []const u8) void {
self.decrementCount(uri);
}
pub fn getHandle(self: *DocumentStore, uri: []const u8) ?*Handle {
if (self.handles.get(uri)) |entry| {
return entry.value;
}
return null;
}
// Check if the document text is now sane, move it to sane_text if so.
fn refreshDocument(self: *DocumentStore, handle: *Handle, zig_lib_path: ?[]const u8) !void {
std.debug.warn("New text for document {}\n", .{handle.uri()});
handle.tree.deinit();
handle.tree = try std.zig.parse(self.allocator, handle.document.text);
// TODO: Better algorithm or data structure?
// Removing the imports is costly since they live in an array list
// Perhaps we should use an AutoHashMap([]const u8, {}) ?
// Try to detect removed imports and decrement their counts.
if (handle.import_uris.items.len == 0) return;
var arena = std.heap.ArenaAllocator.init(self.allocator);
defer arena.deinit();
var import_strs = std.ArrayList([]const u8).init(&arena.allocator);
try analysis.collectImports(&import_strs, handle.tree);
const still_exist = try arena.allocator.alloc(bool, handle.import_uris.items.len);
for (still_exist) |*ex| {
ex.* = false;
}
const std_uri = try stdUriFromLibPath(&arena.allocator, zig_lib_path);
for (import_strs.items) |str| {
const uri = (try uriFromImportStr(self, &arena.allocator, handle.*, str, std_uri)) orelse continue;
var idx: usize = 0;
exists_loop: while (idx < still_exist.len) : (idx += 1) {
if (still_exist[idx]) continue;
if (std.mem.eql(u8, handle.import_uris.items[idx], uri)) {
still_exist[idx] = true;
break :exists_loop;
}
}
}
// Go through still_exist, remove the items that are false and decrement their handle counts.
var offset: usize = 0;
var idx: usize = 0;
while (idx < still_exist.len) : (idx += 1) {
if (still_exist[idx]) continue;
std.debug.warn("Import removed: {}\n", .{handle.import_uris.items[idx - offset]});
const uri = handle.import_uris.orderedRemove(idx - offset);
offset += 1;
self.decrementCount(uri);
self.allocator.free(uri);
}
}
pub fn applyChanges(
self: *DocumentStore,
handle: *Handle,
content_changes: std.json.Array,
zig_lib_path: ?[]const u8,
) !void {
const document = &handle.document;
for (content_changes.items) |change| {
if (change.Object.getValue("range")) |range| {
const start_pos = types.Position{
.line = range.Object.getValue("start").?.Object.getValue("line").?.Integer,
.character = range.Object.getValue("start").?.Object.getValue("character").?.Integer,
};
const end_pos = types.Position{
.line = range.Object.getValue("end").?.Object.getValue("line").?.Integer,
.character = range.Object.getValue("end").?.Object.getValue("character").?.Integer,
};
const change_text = change.Object.getValue("text").?.String;
const start_index = try document.positionToIndex(start_pos);
const end_index = try document.positionToIndex(end_pos);
const old_len = document.text.len;
const new_len = old_len + change_text.len;
if (new_len > document.mem.len) {
// We need to reallocate memory.
// We reallocate twice the current filesize or the new length, if it's more than that
// so that we can reduce the amount of realloc calls.
// We can tune this to find a better size if needed.
const realloc_len = std.math.max(2 * old_len, new_len);
document.mem = try self.allocator.realloc(document.mem, realloc_len);
}
// The first part of the string, [0 .. start_index] need not be changed.
// We then copy the last part of the string, [end_index ..] to its
// new position, [start_index + change_len .. ]
std.mem.copy(u8, document.mem[start_index + change_text.len ..][0 .. old_len - end_index], document.mem[end_index..old_len]);
// Finally, we copy the changes over.
std.mem.copy(u8, document.mem[start_index..][0..change_text.len], change_text);
// Reset the text substring.
document.text = document.mem[0..new_len];
} else {
const change_text = change.Object.getValue("text").?.String;
const old_len = document.text.len;
if (change_text.len > document.mem.len) {
// Like above.
const realloc_len = std.math.max(2 * old_len, change_text.len);
document.mem = try self.allocator.realloc(document.mem, realloc_len);
}
std.mem.copy(u8, document.mem[0..change_text.len], change_text);
document.text = document.mem[0..change_text.len];
}
}
try self.refreshDocument(handle, zig_lib_path);
if (handle.is_build_file) |build_file| {
loadPackages(.{
.build_file = build_file,
.allocator = self.allocator,
.build_runner_path = self.build_runner_path,
.zig_exe_path = self.zig_exe_path.?,
}) catch |err| {
std.debug.warn("Failed to load packages of build file {} (error: {})\n", .{ build_file.uri, err });
};
}
}
pub fn uriFromImportStr(
store: *DocumentStore,
allocator: *std.mem.Allocator,
handle: Handle,
import_str: []const u8,
std_uri: ?[]const u8,
) !?[]const u8 {
if (std.mem.eql(u8, import_str, "std")) {
if (std_uri) |uri| return try std.mem.dupe(allocator, u8, uri) else {
std.debug.warn("Cannot resolve std library import, path is null.\n", .{});
return null;
}
} else if (std.mem.eql(u8, import_str, "builtin")) {
return null; // TODO find the correct zig-cache folder
} else if (!std.mem.endsWith(u8, import_str, ".zig")) {
if (handle.associated_build_file) |build_file| {
for (build_file.packages.items) |pkg| {
if (std.mem.eql(u8, import_str, pkg.name)) {
return try std.mem.dupe(allocator, u8, pkg.uri);
}
}
}
return null;
} else {
// Find relative uri
const path = try URI.parse(allocator, handle.uri());
defer allocator.free(path);
const dir_path = std.fs.path.dirname(path) orelse "";
const import_path = try std.fs.path.resolve(allocator, &[_][]const u8{
dir_path, import_str,
});
defer allocator.free(import_path);
return try URI.fromPath(allocator, import_path);
}
}
pub const AnalysisContext = struct {
store: *DocumentStore,
handle: *Handle,
// This arena is used for temporary allocations while analyzing,
// not for the tree allocations.
arena: *std.heap.ArenaAllocator,
scope_nodes: []*std.zig.ast.Node,
in_container: *std.zig.ast.Node,
std_uri: ?[]const u8,
error_completions: *TagStore,
enum_completions: *TagStore,
pub fn tree(self: AnalysisContext) *std.zig.ast.Tree {
return self.handle.tree;
}
fn refreshScopeNodes(self: *AnalysisContext) !void {
var scope_nodes = std.ArrayList(*std.zig.ast.Node).init(&self.arena.allocator);
try analysis.addChildrenNodes(&scope_nodes, self.tree(), &self.tree().root_node.base);
self.scope_nodes = scope_nodes.items;
self.in_container = &self.tree().root_node.base;
}
pub fn onContainer(self: *AnalysisContext, container: *std.zig.ast.Node) !void {
std.debug.assert(container.id == .ContainerDecl or container.id == .Root);
if (self.in_container != container) {
self.in_container = container;
var scope_nodes = std.ArrayList(*std.zig.ast.Node).fromOwnedSlice(&self.arena.allocator, self.scope_nodes);
try analysis.addChildrenNodes(&scope_nodes, self.tree(), container);
self.scope_nodes = scope_nodes.items;
}
}
pub fn onImport(self: *AnalysisContext, import_str: []const u8) !?*std.zig.ast.Node {
const allocator = self.store.allocator;
const final_uri = (try uriFromImportStr(
self.store,
self.store.allocator,
self.handle.*,
import_str,
self.std_uri,
)) orelse return null;
std.debug.warn("Import final URI: {}\n", .{final_uri});
var consumed_final_uri = false;
defer if (!consumed_final_uri) allocator.free(final_uri);
// Check if we already imported this.
for (self.handle.import_uris.items) |uri| {
// If we did, set our new handle and return the parsed tree root node.
if (std.mem.eql(u8, uri, final_uri)) {
self.handle = self.store.getHandle(final_uri) orelse return null;
try self.refreshScopeNodes();
return &self.tree().root_node.base;
}
}
// New import.
// Check if the import is already opened by others.
if (self.store.getHandle(final_uri)) |new_handle| {
// If it is, append it to our imports, increment the count, set our new handle
// and return the parsed tree root node.
try self.handle.import_uris.append(final_uri);
consumed_final_uri = true;
new_handle.count += 1;
self.handle = new_handle;
try self.refreshScopeNodes();
return &self.tree().root_node.base;
}
// New document, read the file then call into openDocument.
const file_path = try URI.parse(allocator, final_uri);
defer allocator.free(file_path);
var file = std.fs.cwd().openFile(file_path, .{}) catch {
std.debug.warn("Cannot open import file {}\n", .{file_path});
return null;
};
defer file.close();
const size = std.math.cast(usize, try file.getEndPos()) catch std.math.maxInt(usize);
{
const file_contents = try allocator.alloc(u8, size);
errdefer allocator.free(file_contents);
file.inStream().readNoEof(file_contents) catch {
std.debug.warn("Could not read from file {}\n", .{file_path});
return null;
};
// Add to import table of current handle.
try self.handle.import_uris.append(final_uri);
consumed_final_uri = true;
// Swap handles.
// This takes ownership of the passed uri and text.
const duped_final_uri = try std.mem.dupe(allocator, u8, final_uri);
errdefer allocator.free(duped_final_uri);
self.handle = try newDocument(self.store, duped_final_uri, file_contents);
}
try self.refreshScopeNodes();
return &self.tree().root_node.base;
}
pub fn clone(self: *AnalysisContext) !AnalysisContext {
// Copy the cope nodes, the rest are references
// that are not owned by the context.
return AnalysisContext{
.store = self.store,
.handle = self.handle,
.arena = self.arena,
.scope_nodes = try std.mem.dupe(&self.arena.allocator, *std.zig.ast.Node, self.scope_nodes),
.in_container = self.in_container,
.std_uri = self.std_uri,
.error_completions = self.error_completions,
.enum_completions = self.enum_completions,
};
}
};
pub fn stdUriFromLibPath(allocator: *std.mem.Allocator, zig_lib_path: ?[]const u8) !?[]const u8 {
if (zig_lib_path) |zpath| {
const std_path = std.fs.path.resolve(allocator, &[_][]const u8{
zpath, "./std/std.zig",
}) catch |err| block: {
std.debug.warn("Failed to resolve zig std library path, error: {}\n", .{err});
return null;
};
defer allocator.free(std_path);
// Get the std_path as a URI, so we can just append to it!
return try URI.fromPath(allocator, std_path);
}
return null;
}
pub fn analysisContext(
self: *DocumentStore,
handle: *Handle,
arena: *std.heap.ArenaAllocator,
position: usize,
zig_lib_path: ?[]const u8,
) !AnalysisContext {
var scope_nodes = std.ArrayList(*std.zig.ast.Node).init(&arena.allocator);
try analysis.declsFromIndex(arena, &scope_nodes, handle.tree, position);
const std_uri = try stdUriFromLibPath(&arena.allocator, zig_lib_path);
return AnalysisContext{
.store = self,
.handle = handle,
.arena = arena,
.scope_nodes = scope_nodes.items,
.in_container = &handle.tree.root_node.base,
.std_uri = std_uri,
.error_completions = &self.error_completions,
.enum_completions = &self.enum_completions,
};
}
pub fn deinit(self: *DocumentStore) void {
var entry_iterator = self.handles.iterator();
while (entry_iterator.next()) |entry| {
self.allocator.free(entry.value.document.mem);
for (entry.value.import_uris.items) |uri| {
self.allocator.free(uri);
}
entry.value.import_uris.deinit();
self.allocator.free(entry.key);
self.allocator.destroy(entry.value);
}
self.handles.deinit();
for (self.build_files.items) |build_file| {
for (build_file.packages.items) |pkg| {
self.allocator.free(pkg.name);
self.allocator.free(pkg.uri);
}
self.allocator.free(build_file.uri);
self.allocator.destroy(build_file);
}
self.build_files.deinit(self.allocator);
self.error_completions.deinit();
self.enum_completions.deinit();
}