const std = @import("std"); const types = @import("types.zig"); const URI = @import("uri.zig"); const analysis = @import("analysis.zig"); const offsets = @import("offsets.zig"); const log = std.log.scoped(.doc_store); const DocumentStore = @This(); const BuildFile = struct { const Pkg = struct { name: []const u8, uri: []const u8, }; refs: usize, uri: []const u8, packages: std.ArrayListUnmanaged(Pkg), }; pub const Handle = struct { document: types.TextDocument, count: usize, import_uris: std.ArrayList([]const u8), tree: *std.zig.ast.Tree, document_scope: analysis.DocumentScope, associated_build_file: ?*BuildFile, is_build_file: ?*BuildFile, pub fn uri(handle: Handle) []const u8 { return handle.document.uri; } }; allocator: *std.mem.Allocator, handles: std.StringHashMap(*Handle), zig_exe_path: ?[]const u8, build_files: std.ArrayListUnmanaged(*BuildFile), build_runner_path: []const u8, std_uri: ?[]const u8, pub fn init( self: *DocumentStore, allocator: *std.mem.Allocator, zig_exe_path: ?[]const u8, build_runner_path: []const u8, zig_lib_path: ?[]const u8, ) !void { self.allocator = allocator; self.handles = std.StringHashMap(*Handle).init(allocator); self.zig_exe_path = zig_exe_path; self.build_files = .{}; self.build_runner_path = build_runner_path; self.std_uri = try stdUriFromLibPath(allocator, zig_lib_path); } const LoadPackagesContext = struct { build_file: *BuildFile, allocator: *std.mem.Allocator, build_runner_path: []const u8, zig_exe_path: []const u8, }; fn loadPackages(context: LoadPackagesContext) !void { const allocator = context.allocator; const build_file = context.build_file; const build_runner_path = context.build_runner_path; const zig_exe_path = context.zig_exe_path; const directory_path = try URI.parse(allocator, build_file.uri[0 .. build_file.uri.len - "build.zig".len]); defer allocator.free(directory_path); const target_path = try std.fs.path.resolve(allocator, &[_][]const u8{ directory_path, "build_runner.zig" }); defer allocator.free(target_path); // For example, instead of testing if a file exists and then opening it, just // open it and handle the error for file not found. var file_exists = true; check_file_exists: { var fhandle = std.fs.cwd().openFile(target_path, .{ .read = true, .write = false }) catch |err| switch (err) { error.FileNotFound => { file_exists = false; break :check_file_exists; }, else => break :check_file_exists, }; fhandle.close(); } if (file_exists) return error.BuildRunnerFileExists; try std.fs.copyFileAbsolute(build_runner_path, target_path, .{}); defer std.fs.deleteFileAbsolute(target_path) catch {}; const zig_run_result = try std.ChildProcess.exec(.{ .allocator = allocator, .argv = &[_][]const u8{ zig_exe_path, "run", "build_runner.zig" }, .cwd = directory_path, }); defer { allocator.free(zig_run_result.stdout); allocator.free(zig_run_result.stderr); } switch (zig_run_result.term) { .Exited => |exit_code| { if (exit_code == 0) { log.debug("Finished zig run for build file {}", .{build_file.uri}); for (build_file.packages.items) |old_pkg| { allocator.free(old_pkg.name); allocator.free(old_pkg.uri); } build_file.packages.shrink(allocator, 0); var line_it = std.mem.split(zig_run_result.stdout, "\n"); while (line_it.next()) |line| { if (std.mem.indexOfScalar(u8, line, '\x00')) |zero_byte_idx| { const name = line[0..zero_byte_idx]; const rel_path = line[zero_byte_idx + 1 ..]; const pkg_abs_path = try std.fs.path.resolve(allocator, &[_][]const u8{ directory_path, rel_path }); defer allocator.free(pkg_abs_path); const pkg_uri = try URI.fromPath(allocator, pkg_abs_path); errdefer allocator.free(pkg_uri); const duped_name = try std.mem.dupe(allocator, u8, name); errdefer allocator.free(duped_name); (try build_file.packages.addOne(allocator)).* = .{ .name = duped_name, .uri = pkg_uri, }; } } } }, else => return error.RunFailed, } } /// This function asserts the document is not open yet and takes ownership /// of the uri and text passed in. fn newDocument(self: *DocumentStore, uri: []const u8, text: []u8) anyerror!*Handle { log.debug("Opened document: {}", .{uri}); var handle = try self.allocator.create(Handle); errdefer self.allocator.destroy(handle); const tree = try std.zig.parse(self.allocator, text); errdefer tree.deinit(); const document_scope = try analysis.makeDocumentScope(self.allocator, tree); errdefer document_scope.deinit(self.allocator); handle.* = Handle{ .count = 1, .import_uris = std.ArrayList([]const u8).init(self.allocator), .document = .{ .uri = uri, .text = text, .mem = text, }, .tree = tree, .document_scope = document_scope, .associated_build_file = null, .is_build_file = null, }; // TODO: Better logic for detecting std or subdirectories? const in_std = std.mem.indexOf(u8, uri, "/std/") != null; if (self.zig_exe_path != null and std.mem.endsWith(u8, uri, "/build.zig") and !in_std) { log.debug("Document is a build file, extracting packages...", .{}); // This is a build file. var build_file = try self.allocator.create(BuildFile); errdefer self.allocator.destroy(build_file); build_file.* = .{ .refs = 1, .uri = try std.mem.dupe(self.allocator, u8, uri), .packages = .{}, }; try self.build_files.append(self.allocator, build_file); handle.is_build_file = build_file; // TODO: Do this in a separate thread? // It can take quite long. loadPackages(.{ .build_file = build_file, .allocator = self.allocator, .build_runner_path = self.build_runner_path, .zig_exe_path = self.zig_exe_path.?, }) catch |err| { log.debug("Failed to load packages of build file {} (error: {})", .{ build_file.uri, err }); }; } else if (self.zig_exe_path != null and !in_std) associate_build_file: { // Look into build files to see if we already have one that fits for (self.build_files.items) |build_file| { const build_file_base_uri = build_file.uri[0 .. std.mem.lastIndexOfScalar(u8, build_file.uri, '/').? + 1]; if (std.mem.startsWith(u8, uri, build_file_base_uri)) { log.debug("Found an associated build file: {}", .{build_file.uri}); build_file.refs += 1; handle.associated_build_file = build_file; break :associate_build_file; } } // Otherwise, try to find a build file. var curr_path = try URI.parse(self.allocator, uri); defer self.allocator.free(curr_path); while (true) { if (curr_path.len == 0) break :associate_build_file; if (std.mem.lastIndexOfScalar(u8, curr_path[0 .. curr_path.len - 1], std.fs.path.sep)) |idx| { // This includes the last separator curr_path = curr_path[0 .. idx + 1]; var folder = std.fs.cwd().openDir(curr_path, .{}) catch |err| switch (err) { error.FileNotFound => continue, else => return err, }; defer folder.close(); // Try to open the file, read it and add the new document if we find it. const build_file_text = folder.readFileAlloc(self.allocator, "build.zig", std.math.maxInt(usize)) catch |err| switch (err) { error.FileNotFound, error.AccessDenied => continue, else => return err, }; errdefer self.allocator.free(build_file_text); var candidate_path = try std.mem.concat(self.allocator, u8, &[_][]const u8{ curr_path, "build.zig" }); defer self.allocator.free(candidate_path); const build_file_uri = try URI.fromPath(self.allocator, candidate_path); errdefer self.allocator.free(build_file_uri); const build_file_handle = try self.newDocument(build_file_uri, build_file_text); if (build_file_handle.is_build_file) |build_file| { build_file.refs += 1; } handle.associated_build_file = build_file_handle.is_build_file; break; } else break :associate_build_file; } } try self.handles.putNoClobber(uri, handle); return handle; } pub fn openDocument(self: *DocumentStore, uri: []const u8, text: []const u8) !*Handle { if (self.handles.getEntry(uri)) |entry| { log.debug("Document already open: {}, incrementing count", .{uri}); entry.value.count += 1; if (entry.value.is_build_file) |build_file| { build_file.refs += 1; } log.debug("New count: {}", .{entry.value.count}); return entry.value; } const duped_text = try std.mem.dupe(self.allocator, u8, text); errdefer self.allocator.free(duped_text); const duped_uri = try std.mem.dupe(self.allocator, u8, uri); errdefer self.allocator.free(duped_uri); return try self.newDocument(duped_uri, duped_text); } fn decrementBuildFileRefs(self: *DocumentStore, build_file: *BuildFile) void { build_file.refs -= 1; if (build_file.refs == 0) { log.debug("Freeing build file {}", .{build_file.uri}); for (build_file.packages.items) |pkg| { self.allocator.free(pkg.name); self.allocator.free(pkg.uri); } build_file.packages.deinit(self.allocator); // Decrement count of the document since one count comes // from the build file existing. self.decrementCount(build_file.uri); self.allocator.free(build_file.uri); // Remove the build file from the array list _ = self.build_files.swapRemove(std.mem.indexOfScalar(*BuildFile, self.build_files.items, build_file).?); self.allocator.destroy(build_file); } } fn decrementCount(self: *DocumentStore, uri: []const u8) void { if (self.handles.getEntry(uri)) |entry| { if (entry.value.count == 0) return; entry.value.count -= 1; if (entry.value.count > 0) return; log.debug("Freeing document: {}", .{uri}); if (entry.value.associated_build_file) |build_file| { self.decrementBuildFileRefs(build_file); } if (entry.value.is_build_file) |build_file| { self.decrementBuildFileRefs(build_file); } entry.value.tree.deinit(); self.allocator.free(entry.value.document.mem); for (entry.value.import_uris.items) |import_uri| { self.decrementCount(import_uri); self.allocator.free(import_uri); } entry.value.document_scope.deinit(self.allocator); entry.value.import_uris.deinit(); self.allocator.destroy(entry.value); const uri_key = entry.key; self.handles.removeAssertDiscard(uri); self.allocator.free(uri_key); } } pub fn closeDocument(self: *DocumentStore, uri: []const u8) void { self.decrementCount(uri); } pub fn getHandle(self: *DocumentStore, uri: []const u8) ?*Handle { return self.handles.get(uri); } // Check if the document text is now sane, move it to sane_text if so. fn refreshDocument(self: *DocumentStore, handle: *Handle, zig_lib_path: ?[]const u8) !void { log.debug("New text for document {}", .{handle.uri()}); handle.tree.deinit(); handle.tree = try std.zig.parse(self.allocator, handle.document.text); handle.document_scope.deinit(self.allocator); handle.document_scope = try analysis.makeDocumentScope(self.allocator, handle.tree); // TODO: Better algorithm or data structure? // Removing the imports is costly since they live in an array list // Perhaps we should use an AutoHashMap([]const u8, {}) ? // Try to detect removed imports and decrement their counts. if (handle.import_uris.items.len == 0) return; var arena = std.heap.ArenaAllocator.init(self.allocator); defer arena.deinit(); var import_strs = std.ArrayList([]const u8).init(&arena.allocator); try analysis.collectImports(&import_strs, handle.tree); const still_exist = try arena.allocator.alloc(bool, handle.import_uris.items.len); for (still_exist) |*ex| { ex.* = false; } const std_uri = try stdUriFromLibPath(&arena.allocator, zig_lib_path); for (import_strs.items) |str| { const uri = (try self.uriFromImportStr(&arena.allocator, handle.*, str)) orelse continue; var idx: usize = 0; exists_loop: while (idx < still_exist.len) : (idx += 1) { if (still_exist[idx]) continue; if (std.mem.eql(u8, handle.import_uris.items[idx], uri)) { still_exist[idx] = true; break :exists_loop; } } } // Go through still_exist, remove the items that are false and decrement their handle counts. var offset: usize = 0; var idx: usize = 0; while (idx < still_exist.len) : (idx += 1) { if (still_exist[idx]) continue; log.debug("Import removed: {}", .{handle.import_uris.items[idx - offset]}); const uri = handle.import_uris.orderedRemove(idx - offset); offset += 1; self.decrementCount(uri); self.allocator.free(uri); } } pub fn applySave(self: *DocumentStore, handle: *Handle) !void { if (handle.is_build_file) |build_file| { loadPackages(.{ .build_file = build_file, .allocator = self.allocator, .build_runner_path = self.build_runner_path, .zig_exe_path = self.zig_exe_path.?, }) catch |err| { log.debug("Failed to load packages of build file {} (error: {})", .{ build_file.uri, err }); }; } } pub fn applyChanges( self: *DocumentStore, handle: *Handle, content_changes: std.json.Array, offset_encoding: offsets.Encoding, zig_lib_path: ?[]const u8, ) !void { const document = &handle.document; for (content_changes.items) |change| { if (change.Object.get("range")) |range| { std.debug.assert(document.text.ptr == document.mem.ptr); const start_pos = types.Position{ .line = range.Object.get("start").?.Object.get("line").?.Integer, .character = range.Object.get("start").?.Object.get("character").?.Integer, }; const end_pos = types.Position{ .line = range.Object.get("end").?.Object.get("line").?.Integer, .character = range.Object.get("end").?.Object.get("character").?.Integer, }; const change_text = change.Object.get("text").?.String; const start_index = (try offsets.documentPosition(document.*, start_pos, offset_encoding)).absolute_index; const end_index = (try offsets.documentPosition(document.*, end_pos, offset_encoding)).absolute_index; const old_len = document.text.len; const new_len = old_len - (end_index - start_index) + change_text.len; if (new_len > document.mem.len) { // We need to reallocate memory. // We reallocate twice the current filesize or the new length, if it's more than that // so that we can reduce the amount of realloc calls. // We can tune this to find a better size if needed. const realloc_len = std.math.max(2 * old_len, new_len); document.mem = try self.allocator.realloc(document.mem, realloc_len); } // The first part of the string, [0 .. start_index] need not be changed. // We then copy the last part of the string, [end_index ..] to its // new position, [start_index + change_len .. ] if (new_len < old_len) { std.mem.copy(u8, document.mem[start_index + change_text.len ..][0 .. old_len - end_index], document.mem[end_index..old_len]); } else { std.mem.copyBackwards(u8, document.mem[start_index + change_text.len ..][0 .. old_len - end_index], document.mem[end_index..old_len]); } // Finally, we copy the changes over. std.mem.copy(u8, document.mem[start_index..][0..change_text.len], change_text); // Reset the text substring. document.text = document.mem[0..new_len]; } else { const change_text = change.Object.get("text").?.String; const old_len = document.text.len; if (change_text.len > document.mem.len) { // Like above. const realloc_len = std.math.max(2 * old_len, change_text.len); document.mem = try self.allocator.realloc(document.mem, realloc_len); } std.mem.copy(u8, document.mem[0..change_text.len], change_text); document.text = document.mem[0..change_text.len]; } } try self.refreshDocument(handle, zig_lib_path); } pub fn uriFromImportStr( self: *DocumentStore, allocator: *std.mem.Allocator, handle: Handle, import_str: []const u8, ) !?[]const u8 { if (std.mem.eql(u8, import_str, "std")) { if (self.std_uri) |uri| return try std.mem.dupe(allocator, u8, uri) else { log.debug("Cannot resolve std library import, path is null.", .{}); return null; } } else if (std.mem.eql(u8, import_str, "builtin")) { return null; // TODO find the correct zig-cache folder } else if (!std.mem.endsWith(u8, import_str, ".zig")) { if (handle.associated_build_file) |build_file| { for (build_file.packages.items) |pkg| { if (std.mem.eql(u8, import_str, pkg.name)) { return try std.mem.dupe(allocator, u8, pkg.uri); } } } return null; } else { // Find relative uri const path = try URI.parse(allocator, handle.uri()); defer allocator.free(path); const dir_path = std.fs.path.dirname(path) orelse ""; const import_path = try std.fs.path.resolve(allocator, &[_][]const u8{ dir_path, import_str, }); defer allocator.free(import_path); return try URI.fromPath(allocator, import_path); } } pub fn resolveImport(self: *DocumentStore, handle: *Handle, import_str: []const u8) !?*Handle { const allocator = self.allocator; const final_uri = (try self.uriFromImportStr( self.allocator, handle.*, import_str, )) orelse return null; var consumed_final_uri = false; defer if (!consumed_final_uri) allocator.free(final_uri); // Check if we already imported this. for (handle.import_uris.items) |uri| { // If we did, set our new handle and return the parsed tree root node. if (std.mem.eql(u8, uri, final_uri)) { return self.getHandle(final_uri); } } // New import. // Check if the import is already opened by others. if (self.getHandle(final_uri)) |new_handle| { // If it is, append it to our imports, increment the count, set our new handle // and return the parsed tree root node. try handle.import_uris.append(final_uri); consumed_final_uri = true; new_handle.count += 1; return new_handle; } // New document, read the file then call into openDocument. const file_path = try URI.parse(allocator, final_uri); defer allocator.free(file_path); var file = std.fs.cwd().openFile(file_path, .{}) catch { log.debug("Cannot open import file {}", .{file_path}); return null; }; defer file.close(); const size = std.math.cast(usize, try file.getEndPos()) catch std.math.maxInt(usize); { const file_contents = try allocator.alloc(u8, size); errdefer allocator.free(file_contents); file.reader().readNoEof(file_contents) catch { log.debug("Could not read from file {}", .{file_path}); return null; }; // Add to import table of current handle. try handle.import_uris.append(final_uri); consumed_final_uri = true; // Swap handles. // This takes ownership of the passed uri and text. const duped_final_uri = try std.mem.dupe(allocator, u8, final_uri); errdefer allocator.free(duped_final_uri); return try self.newDocument(duped_final_uri, file_contents); } } fn stdUriFromLibPath(allocator: *std.mem.Allocator, zig_lib_path: ?[]const u8) !?[]const u8 { if (zig_lib_path) |zpath| { const std_path = std.fs.path.resolve(allocator, &[_][]const u8{ zpath, "./std/std.zig", }) catch |err| { log.debug("Failed to resolve zig std library path, error: {}", .{err}); return null; }; defer allocator.free(std_path); // Get the std_path as a URI, so we can just append to it! return try URI.fromPath(allocator, std_path); } return null; } pub fn deinit(self: *DocumentStore) void { var entry_iterator = self.handles.iterator(); while (entry_iterator.next()) |entry| { entry.value.document_scope.deinit(self.allocator); entry.value.tree.deinit(); self.allocator.free(entry.value.document.mem); for (entry.value.import_uris.items) |uri| { self.allocator.free(uri); } entry.value.import_uris.deinit(); self.allocator.free(entry.key); self.allocator.destroy(entry.value); } self.handles.deinit(); for (self.build_files.items) |build_file| { for (build_file.packages.items) |pkg| { self.allocator.free(pkg.name); self.allocator.free(pkg.uri); } build_file.packages.deinit(self.allocator); self.allocator.free(build_file.uri); self.allocator.destroy(build_file); } if (self.std_uri) |std_uri| { self.allocator.free(std_uri); } self.allocator.free(self.build_runner_path); self.build_files.deinit(self.allocator); } fn tagStoreCompletionItems(self: DocumentStore, arena: *std.heap.ArenaAllocator, base: *DocumentStore.Handle, comptime name: []const u8) ![]types.CompletionItem { // TODO Better solution for deciding what tags to include var handle_arr = try arena.allocator.alloc(*DocumentStore.Handle, base.import_uris.items.len + 1); handle_arr[0] = base; var len: usize = @field(base.document_scope, name).len; for (base.import_uris.items) |uri, idx| { handle_arr[idx + 1] = self.handles.get(uri).?; len += @field(handle_arr[idx + 1].document_scope, name).len; } var result = try arena.allocator.alloc(types.CompletionItem, len); var res_idx: usize = 0; for (handle_arr) |handle| { for (@field(handle.document_scope, name)) |item| { result[res_idx] = item; res_idx += 1; } } return result; } pub fn errorCompletionItems(self: DocumentStore, arena: *std.heap.ArenaAllocator, base: *DocumentStore.Handle) ![]types.CompletionItem { return try self.tagStoreCompletionItems(arena, base, "error_completions"); } pub fn enumCompletionItems(self: DocumentStore, arena: *std.heap.ArenaAllocator, base: *DocumentStore.Handle) ![]types.CompletionItem { return try self.tagStoreCompletionItems(arena, base, "enum_completions"); }