scyther/src/binding.c
ccremers 5e1ca56f87 - Added experimental feature: explicit unique origination. This has to
be investigated further, because it seems to reduce just a few states.
  Note to Gijs: stay away from this, you should be writing your thesis.
2005-10-08 20:57:39 +00:00

891 lines
18 KiB
C

/**
* Handle bindings for Arache engine.
*/
#include "list.h"
#include "role.h"
#include "label.h"
#include "system.h"
#include "binding.h"
#include "warshall.h"
#include "memory.h"
#include "debug.h"
#include "term.h"
#include "termmap.h"
#include "arachne.h"
#include "switches.h"
#include <malloc.h>
static System sys;
int *graph = NULL;
int nodes = 0;
int graph_uordblks = 0;
extern Protocol INTRUDER; // The intruder protocol
extern Role I_M; // special role; precedes all other events always
/*
* Forward declarations
*/
void goal_graph_destroy ();
/*
*
* Assist stuff
*
*/
//! Create mem for binding
Binding
binding_create (Term term, int run_to, int ev_to)
{
Binding b;
b = memAlloc (sizeof (struct binding));
b->done = 0;
b->blocked = 0;
b->run_from = -1;
b->ev_from = -1;
b->run_to = run_to;
b->ev_to = ev_to;
goal_graph_destroy ();
b->term = term;
b->level = 0;
return b;
}
//! Remove mem for binding
void
binding_destroy (Binding b)
{
if (b->done)
{
goal_unbind (b);
}
memFree (b, sizeof (struct binding));
}
//! Test whether one event is ordered before another
/**
* Is only guaranteed to yield trustworthy results after a new graph is created, using
* goal_graph_create ()
*/
int
isOrderedBefore (const int run1, const int ev1, const int run2, const int ev2)
{
return graph[graph_nodes (nodes, run2, ev2, run2, ev2)];
}
/*
*
* Main
*
*/
//! Init module
void
bindingInit (const System mysys)
{
sys = mysys;
sys->bindings = NULL;
graph = NULL;
nodes = 0;
graph_uordblks = 0;
}
//! Close up
void
bindingDone ()
{
int delete (Binding b)
{
binding_destroy (b);
return 1;
}
list_iterate (sys->bindings, delete);
list_destroy (sys->bindings);
}
//! Destroy graph
void
goal_graph_destroy ()
{
if (graph != NULL)
{
#ifdef DEBUG
struct mallinfo mi_free;
int mem_free;
mi_free = mallinfo ();
mem_free = mi_free.uordblks;
#endif
memFree (graph, (nodes * nodes) * sizeof (int));
graph = NULL;
#ifdef DEBUG
mi_free = mallinfo ();
if (mem_free - mi_free.uordblks != graph_uordblks)
error ("Freeing gave a weird result.");
#endif
graph_uordblks = 0;
nodes = 0;
}
}
//! Compute unclosed graph
void
goal_graph_create ()
{
int run, ev;
int last_m;
List bl;
goal_graph_destroy ();
// Setup graph
nodes = node_count ();
{
struct mallinfo create_mi;
int create_mem_before;
if (graph_uordblks != 0)
error
("Trying to create graph stuff without 0 uordblks for it first, but it is %i.",
graph_uordblks);
create_mi = mallinfo ();
create_mem_before = create_mi.uordblks;
graph = memAlloc ((nodes * nodes) * sizeof (int));
create_mi = mallinfo ();
graph_uordblks = create_mi.uordblks - create_mem_before;
}
{
graph_fill (graph, nodes, 0);
// Setup run order
run = 0;
last_m = -1; // last I_M run
while (run < sys->maxruns)
{
ev = 1;
//!@todo This now reference to step, but we intend "length" as in Arachne.
while (ev < sys->runs[run].step)
{
graph[graph_nodes (nodes, run, ev - 1, run, ev)] = 1;
ev++;
}
// Enforce I_M ordering
if (sys->runs[run].protocol == INTRUDER && sys->runs[run].role == I_M)
{
if (last_m != -1)
{
graph[graph_nodes (nodes, last_m, 0, run, 0)] = 1;
}
last_m = run;
}
// Next
run++;
}
// Setup bindings order
bl = sys->bindings;
while (bl != NULL)
{
Binding b;
b = (Binding) bl->data;
if (valid_binding (b))
{
#ifdef DEBUG
if (graph_nodes
(nodes, b->run_from, b->ev_from, b->run_to,
b->ev_to) >= (nodes * nodes))
error ("Node out of scope for %i,%i -> %i,%i.\n", b->run_from,
b->ev_from, b->run_to, b->ev_to);
#endif
graph[graph_nodes
(nodes, b->run_from, b->ev_from, b->run_to, b->ev_to)] = 1;
}
bl = bl->next;
}
// Setup local constants order
run = 0;
while (run < sys->maxruns)
{
if (sys->runs[run].protocol != INTRUDER)
{
int run2;
run2 = 0;
while (run2 < sys->maxruns)
{
if (sys->runs[run].protocol != INTRUDER && run != run2)
{
// For these two runs, we check whether run has any variables that are mapped
// to constants from run2
Termlist tl;
tl = sys->runs[run].locals;
while (tl != NULL)
{
Term t;
t = tl->term;
if (t->type == VARIABLE && TermRunid (t) == run
&& t->subst != NULL)
{
// t is a variable of run
Termlist tl2;
tl2 = sys->runs[run2].locals;
while (tl2 != NULL)
{
Term t2;
t2 = tl2->term;
if (realTermLeaf (t2) && t2->type != VARIABLE
&& TermRunid (t2) == run2)
{
// t2 is a constant of run2
if (isTermEqual (t, t2))
{
// Indeed, run depends on the run2 constant t2. Thus we must store this order.
// The first send of t2 in run2 must be before the first (read) event in run with t2.
int ev2;
int done;
Roledef rd2;
done = 0;
ev2 = 0;
rd2 = sys->runs[run2].start;
while (!done
&& ev2 < sys->runs[run2].step)
{
if (rd2->type == SEND
&& termSubTerm (rd2->message,
t2))
{
// Allright, we send it here at ev2 first
int ev;
Roledef rd;
ev = 0;
rd = sys->runs[run].start;
while (!done
&& ev <
sys->runs[run].step)
{
if (termSubTerm
(rd->message, t2))
{
// Term occurs here in run
if (rd->type == READ)
{
// It's read here first.
// Order and be done with it.
graph[graph_nodes
(nodes,
run2, ev2,
run, ev)] =
1;
#ifdef DEBUG
if (DEBUGL (5))
{
eprintf
("* [local originator] term ");
termPrint
(t2);
eprintf
(" is bound using %i, %i before %i,%i\n",
run2, ev2,
run, ev);
}
#endif
done = 1;
}
else
{
// It doesn't occur first in a READ, which shouldn't be happening
if (switches.
output ==
PROOF)
{
eprintf
("Term ");
termPrint
(t2);
eprintf
(" from run %i occurs in run %i, term ",
run2, run);
termPrint (t);
eprintf
(" before it is read?\n");
}
// Thus, we create an artificial loop
if (sys->runs[0].
step > 1)
{
// This forces a loop, and thus prunes
graph
[graph_nodes
(nodes, 0,
1, 0,
0)] = 1;
}
}
}
rd = rd->next;
ev++;
}
done = 1;
}
rd2 = rd2->next;
ev2++;
}
}
}
tl2 = tl2->next;
}
}
tl = tl->next;
}
}
run2++;
}
}
run++;
}
}
}
/**
*
* Externally available functions
*
*/
//! Yield node count
int
node_count ()
{
int count;
int run;
count = 0;
for (run = 0; run < sys->maxruns; run++)
{
//!@todo This now reference to step, but we intend "length" as in Arachne.
count = count + sys->runs[run].step;
}
return count;
}
//! Yield node number given run, ev
__inline__ int
node_number (int run, int ev)
{
int node;
node = ev;
while (run > 0)
{
run--;
//!@todo This now reference to step, but we intend "length" as in Arachne.
node = node + sys->runs[run].step;
}
return node;
}
//! Yield graph index, given node1, node2 numbers
__inline__ int
graph_index (const int node1, const int node2)
{
return ((node1 * nodes) + node2);
}
//! Yield graph index, given (node1), (node2) tuples
__inline__ int
graph_nodes (const int nodes, const int run1, const int ev1, const int run2,
const int ev2)
{
int node1;
int node2;
node1 = node_number (run1, ev1);
#ifdef DEBUG
if (node1 < 0 || node1 >= nodes)
error ("node_number %i out of scope %i for %i,%i.", node1, nodes, run1,
ev1);
#endif
node2 = node_number (run2, ev2);
#ifdef DEBUG
if (node2 < 0 || node2 >= nodes)
error ("node_number %i out of scope %i for %i,%i.", node2, nodes, run2,
ev2);
#endif
return graph_index (node1, node2);
}
//! Print a binding (given a binding list pointer)
int
binding_print (const Binding b)
{
if (b->done)
eprintf ("Binding (%i,%i) --( ", b->run_from, b->ev_from);
else
eprintf ("Unbound --( ");
termPrint (b->term);
eprintf (" )->> (%i,%i)", b->run_to, b->ev_to);
if (b->blocked)
eprintf ("[blocked]");
return 1;
}
//! Add a goal
/**
* The int parameter 'level' is just to store additional info. Here, it stores priorities for a goal.
* Higher level goals will be selected first. Typically, a normal goal is level 0, a key is 1.
*/
int
goal_add (Term term, const int run, const int ev, const int level)
{
term = deVar (term);
#ifdef DEBUG
if (term == NULL)
error ("Trying to add an emtpy goal term");
if (run >= sys->maxruns)
error ("Trying to add a goal for a run that does not exist.");
if (ev >= sys->runs[run].step)
error
("Trying to add a goal for an event that is not in the semistate yet.");
#endif
if (realTermTuple (term))
{
return goal_add (TermOp1 (term), run, ev, level) +
goal_add (TermOp2 (term), run, ev, level);
}
else
{
// Determine whether we already had it
int nope;
int testSame (void *data)
{
Binding b;
b = (Binding) data;
if (isTermEqual (b->term, term) && run == b->run_to && ev == b->ev_to)
{ // abort scan, report
return 0;
}
else
{ // proceed with scan
return 1;
}
}
nope = list_iterate (sys->bindings, testSame);
if (nope)
{
// Add a new binding
Binding b;
b = binding_create (term, run, ev);
b->level = level;
sys->bindings = list_insert (sys->bindings, b);
#ifdef DEBUG
if (DEBUGL (3))
{
eprintf ("Adding new binding for ");
termPrint (term);
eprintf (" to run %i, ev %i.\n", run, ev);
}
#endif
return 1;
}
}
return 0;
}
//! Add a goal, and bind it immediately.
// If the result is negative, no goals will have been added, as the resulting state must be pruned (cycle) */
int
goal_add_fixed (Term term, const int run, const int ev, const int fromrun,
const int fromev)
{
int newgoals, n;
List l;
int res;
newgoals = goal_add (term, run, ev, 0);
l = sys->bindings;
n = newgoals;
res = 1;
while (res != 0 && n > 0 && l != NULL)
{
Binding b;
b = (Binding) l->data;
if (b->done)
{
globalError++;
binding_print (b);
error (" problem with new fixed binding!");
}
res = goal_bind (b, fromrun, fromev); // returns 0 if it must be pruned
l = l->next;
n--;
}
if (res != 0)
{
return newgoals;
}
else
{
goal_remove_last (newgoals);
return -1;
}
}
//! Remove a goal
void
goal_remove_last (int n)
{
while (n > 0)
{
if (sys->bindings != NULL)
{
Binding b;
b = (Binding) sys->bindings->data;
binding_destroy (b);
sys->bindings = list_delete (sys->bindings);
n--;
}
else
{
error
("goal_remove_last error: trying to remove %i too many bindings.",
n);
}
}
}
//! Bind a goal (0 if it must be pruned)
int
goal_bind (const Binding b, const int run, const int ev)
{
if (b->blocked)
{
error ("Trying to bind a blocked goal.");
}
if (!b->done)
{
#ifdef DEBUG
if (run >= sys->maxruns || sys->runs[run].step <= ev)
error ("Trying to bind to something not yet in the semistate.");
#endif
b->done = 1;
b->run_from = run;
b->ev_from = ev;
goal_graph_create ();
return warshall (graph, nodes);
}
else
{
globalError++;
binding_print (b);
error ("Trying to bind a bound goal again.");
}
}
//! Unbind a goal
void
goal_unbind (const Binding b)
{
if (b->done)
{
goal_graph_destroy (b);
b->done = 0;
}
else
{
error ("Trying to unbind an unbound goal again.");
}
}
//! Bind a goal as a dummy (block)
/**
* Especially made for tuple expansion
*/
int
binding_block (Binding b)
{
if (!b->blocked)
{
b->blocked = 1;
return 1;
}
else
{
error ("Trying to block a goal again.");
}
}
//! Unblock a binding
int
binding_unblock (Binding b)
{
if (b->blocked)
{
b->blocked = 0;
return 1;
}
else
{
error ("Trying to unblock a non-blocked goal.");
}
}
//! Determine whether some label set is ordered w.r.t. send/read order.
/**
* Assumes all these labels exist in the system, within length etc, and that the run mappings are valid.
*/
int
labels_ordered (Termmap runs, Termlist labels)
{
goal_graph_create ();
if (warshall (graph, nodes) == 0)
{
error ("Testing ordering of label set for a graph with a cycle.");
}
while (labels != NULL)
{
// Given this label, and the mapping of runs, we want to know if the order is okay. Thus, we need to know sendrole and readrole
Labelinfo linfo;
int send_run, send_ev, read_run, read_ev;
int get_index (const int run)
{
Roledef rd;
int i;
i = 0;
rd = sys->runs[run].start;
while (rd != NULL && !isTermEqual (rd->label, labels->term))
{
rd = rd->next;
i++;
}
#ifdef DEBUG
if (rd == NULL)
error
("Could not locate send or read for label, after niagree holds, to test for order.");
#endif
return i;
}
linfo = label_find (sys->labellist, labels->term);
send_run = termmapGet (runs, linfo->sendrole);
read_run = termmapGet (runs, linfo->readrole);
send_ev = get_index (send_run);
read_ev = get_index (read_run);
if (graph[graph_nodes (nodes, send_run, send_ev, read_run, read_ev)] ==
0)
{
// Not ordered; false
return 0;
}
// Proceed
labels = labels->next;
}
return 1;
}
//! Check whether the binding denotes a sensible thing such that we can use run_from and ev_from
int
valid_binding (Binding b)
{
if (b->done && !b->blocked)
return 1;
else
return 0;
}
//! Check for unique origination
/*
* Contrary to a previous version, we simply check for unique origination.
* This immediately takes care of any 'occurs before' things. Complexity is N
* log N.
*
* Each term should originate only at one point (thus in one binding)
*
*@returns True, if it's okay. If false, it needs to be pruned.
*/
int
unique_origination ()
{
List bl;
bl = sys->bindings;
while (bl != NULL)
{
Binding b;
b = (Binding) bl->data;
// Check for a valid binding; it has to be 'done' and sensibly bound (not as in tuple expanded stuff)
if (valid_binding (b))
{
Termlist terms;
terms = tuple_to_termlist (b->term);
if (terms != NULL)
{
/* Apparently this is a good term.
* Now we check whether it occurs in any previous bindings as well.
*/
List bl2;
bl2 = sys->bindings;
while (bl2 != bl)
{
Binding b2;
b2 = (Binding) bl2->data;
if (valid_binding (b2))
{
Termlist terms2, sharedterms;
terms2 = tuple_to_termlist (b2->term);
sharedterms = termlistConjunct (terms, terms2);
// Compare terms
if (sharedterms != NULL)
{
// Apparently, this binding shares a term.
// Equal terms should originate at the same point
if (b->run_from != b2->run_from ||
b->ev_from != b2->ev_from)
{
// Not equal: thus no unique origination.
return 0;
}
}
termlistDelete (terms2);
termlistDelete (sharedterms);
}
bl2 = bl2->next;
}
}
termlistDelete (terms);
}
bl = bl->next;
}
return 1;
}
//! Prune invalid state w.r.t. <=C minimal requirement
/**
* Intuition says this can be done a lot more efficient. Luckily this is the prototype.
*
*@returns True, if it's okay. If false, it needs to be pruned.
*/
int
bindings_c_minimal ()
{
List bl;
if (switches.experimental == 1)
{
if (unique_origination () == 0)
{
return 0;
}
}
// Ensure a fresh state graph
goal_graph_create ();
// Recompute closure; does that work?
if (!warshall (graph, nodes))
{
List l;
globalError++;
l = sys->bindings;
while (l != NULL)
{
Binding b;
b = (Binding) l->data;
binding_print (b);
eprintf ("\n");
l = l->next;
}
error ("Detected a cycle when testing for c-minimality");
}
// For all goals
bl = sys->bindings;
while (bl != NULL)
{
Binding b;
b = (Binding) bl->data;
// Check for a valid binding; it has to be 'done' and sensibly bound (not as in tuple expanded stuff)
if (valid_binding (b))
{
int run;
int node_from;
node_from = node_number (b->run_from, b->ev_from);
// Find all preceding events
for (run = 0; run < sys->maxruns; run++)
{
int ev;
//!@todo hardcoded reference to step, should be length
for (ev = 0; ev < sys->runs[run].step; ev++)
{
int node_comp;
node_comp = node_number (run, ev);
if (graph[graph_index (node_comp, node_from)] > 0)
{
// this node is *before* the from node
Roledef rd;
rd = roledef_shift (sys->runs[run].start, ev);
if (termInTerm (rd->message, b->term))
{
// This term already occurs as interm in a previous node!
#ifdef DEBUG
if (DEBUGL (4))
{
// Report this
indentPrint ();
eprintf ("Binding for ");
termPrint (b->term);
eprintf
(" at r%i i%i is not c-minimal because it occurred before at r%i i%i in ",
b->run_from, b->ev_from, run, ev);
termPrint (rd->message);
eprintf ("\n");
}
#endif
return 0;
}
}
}
}
}
bl = bl->next;
}
return 1;
}