/** * *@file prune_bounds.c * * Prune stuff based on bounds * */ #include #include "termlist.h" #include "list.h" #include "switches.h" extern int attack_length; extern int attack_leastcost; extern Protocol INTRUDER; extern int proofDepth; extern int max_encryption_level; //! Prune determination for bounds /** * When something is pruned here, the state space is not complete anymore. * *@returns true iff this state is invalid for some reason */ int prune_bounds (const System sys) { Termlist tl; List bl; /* prune for time */ if (passed_time_limit ()) { // Oh no, we ran out of time! if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: ran out of allowed time (-T %i switch)\n", get_time_limit ()); } // Pruned because of time bound! sys->current_claim->timebound = 1; return 1; } /* prune for number of attacks */ if (enoughAttacks (sys)) { // Oh no, we ran out of time! if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: we already found the maximum number of attacks.\n"); } return 1; } /* prune for proof depth */ if (proofDepth > switches.maxproofdepth) { // Hardcoded limit on proof tree depth if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: proof tree too deep: %i (-d %i switch)\n", proofDepth, switches.maxproofdepth); } return 1; } /* prune for trace length */ if (switches.maxtracelength < INT_MAX) { int tracelength; int run; /* compute trace length of current semistate */ tracelength = 0; run = 0; while (run < sys->maxruns) { /* ignore intruder actions */ if (sys->runs[run].protocol != INTRUDER) { tracelength = tracelength + sys->runs[run].step; } run++; } /* test */ if (tracelength > switches.maxtracelength) { // Hardcoded limit on proof tree depth if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: trace too long: %i (-l %i switch)\n", tracelength, switches.maxtracelength); } return 1; } } if (sys->num_regular_runs > switches.runs) { // Hardcoded limit on runs if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: too many regular runs (%i).\n", sys->num_regular_runs); } return 1; } // This needs some foundation. Probably * 2^max_encryption_level //!@todo Remove later /** * This should be removed once the hidelevel lemma works correctly */ if (switches.experimental & 1) { if ((switches.match < 2) && (sys->num_intruder_runs > ((double) switches.runs * max_encryption_level * 8))) { // Hardcoded limit on iterations if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: %i intruder runs is too much. (max encr. level %i)\n", sys->num_intruder_runs, max_encryption_level); } return 1; } } // Limit on exceeding any attack length if (get_semitrace_length () >= attack_length) { if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: attack length %i.\n", attack_length); } return 1; } /* prune for cheaper */ if (switches.prune != 0 && attack_leastcost <= attackCost (sys)) { // We already had an attack at least this cheap. if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: attack cost exceeds a previously found attack.\n"); } return 1; } // Limit on attack count if (enoughAttacks (sys)) return 1; // Pruning involving the number of intruder actions { // Count intruder actions int actioncount; actioncount = countIntruderActions (); // Limit intruder actions in any case if (!switches.intruder) { if (actioncount > 0) { if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: no intruder allowed.\n", switches.maxIntruderActions); } return 1; } } // Limit on intruder events count if (actioncount > switches.maxIntruderActions) { if (switches.output == PROOF) { indentPrint (); eprintf ("Pruned: more than %i encrypt/decrypt events in the semitrace.\n", switches.maxIntruderActions); } return 1; } } // No pruning because of bounds return 0; }