/** * @file terms.c * \brief Term related base functions. * * Intended to be a standalone file, however during development it turned out that a termlist structure was needed * to define term types, so there is now a dependency loop with termlists.c. */ #include #include #include #include "terms.h" #include "debug.h" #include "memory.h" #include "ctype.h" /* external definitions */ extern Term TERM_Function; extern int inTermlist (); // suppresses a warning, but at what cost? extern int globalLatex; /* forward declarations */ void indent (void); /* useful macros */ #define RID_UNDEF MIN_INT /* main code */ /* Two types of terms: general, and normalized. Normalized rewrites all tuples to (x,(y,z))..NULL form, making list traversal easy. */ //! Initialization of terms code. void termsInit (void) { return; } //! Cleanup of terms code. void termsDone (void) { return; } //! Allocate memory for a term. /** *@return A pointer to the new term memory, which is not yet initialised. */ Term makeTerm () { return (Term) memAlloc (sizeof (struct term)); } //! Create a fresh encrypted term from two existing terms. /** *@return A pointer to the new term. */ Term makeTermEncrypt (Term t1, Term t2) { Term term = makeTerm (); term->type = ENCRYPT; term->stype = NULL; term->left.op = t1; term->right.key = t2; return term; } //! Create a fresh term tuple from two existing terms. /** *@return A pointer to the new term. */ Term makeTermTuple (Term t1, Term t2) { Term tt; if (t1 == NULL) { if (t2 == NULL) { #ifdef DEBUG debug (5, "Trying to make a tuple node with an empty term."); #endif return NULL; } else { return t2; } } if (t2 == NULL) { return t1; } tt = makeTerm (); tt->type = TUPLE; tt->stype = NULL; tt->left.op1 = t1; tt->right.op2 = t2; return tt; } //! Make a term of the given type with run identifier and symbol. /** *@return A pointer to the new term. *\sa GLOBAL, VARIABLE, LEAF, ENCRYPT, TUPLE */ Term makeTermType (const int type, const Symbol symb, const int runid) { Term term = makeTerm (); term->type = type; term->stype = NULL; term->subst = NULL; term->left.symb = symb; term->right.runid = runid; return term; } //! Unwrap any substitutions. /** * For speed, it is also a macro. Sometimes it will call * deVarScan to do the actual unwinding. *@return A term that is either not a variable, or has a NULL substitution. *\sa deVar() */ Term deVarScan (Term t) { while (realTermVariable (t) && t->subst != NULL) t = t->subst; return t; } //! Determine whether a term contains an unsubstituted variable as subterm. /** *@return True iff there is an open variable as subterm. */ int hasTermVariable (Term term) { if (term == NULL) return 0; term = deVar (term); if (realTermLeaf (term)) return realTermVariable (term); else { if (realTermTuple (term)) return (hasTermVariable (term->left.op1) || hasTermVariable (term->right.op2)); else return (hasTermVariable (term->left.op) || hasTermVariable (term->right.key)); } } //!Tests whether two terms are completely identical. /** * This also includes * variables. This is the recursive function. * We assume the term is normalized, e.g. no tupling has direct * subtupling. *@return True iff the terms are equal. *\sa isTermEqual() */ int isTermEqualFn (Term term1, Term term2) { term1 = deVar (term1); term2 = deVar (term2); if (term1 == term2) return 1; if ((term1 == NULL) || (term2 == NULL)) return 0; if (term1->type != term2->type) { return 0; } if (realTermLeaf (term1)) { return (term1->left.symb == term2->left.symb && term1->right.runid == term2->right.runid); } else { /* ENCRYPT or TUPLE */ if (realTermEncrypt (term1)) { /* for optimization of encryption equality, we compare operator 2 first (we expect it to be a smaller term) */ return (isTermEqualFn (term1->right.key, term2->right.key) && isTermEqualFn (term1->left.op, term2->left.op)); } else { /* tuple */ return (isTermEqualFn (term1->left.op1, term2->left.op1) && isTermEqualFn (term1->right.op2, term2->right.op2)); } } } //! See if a term is a subterm of another. /** *@param t Term to be checked for a subterm. *@param tsub Subterm. *@return True iff tsub is a subterm of t. */ int termOccurs (Term t, Term tsub) { t = deVar (t); tsub = deVar (tsub); if (isTermEqual (t, tsub)) return 1; if (realTermLeaf (t)) return 0; if (realTermTuple (t)) return (termOccurs (t->left.op1, tsub) || termOccurs (t->right.op2, tsub)); else return (termOccurs (t->left.op, tsub) || termOccurs (t->right.key, tsub)); } //! Print a term to stdout. /** * The tuple printing only works correctly for normalized terms. * If not, they might are displayed as "((x,y),z)". Maybe that is even * desirable to distinguish them. *\sa termTuplePrint() */ void termPrint (Term term) { if (term == NULL) { printf ("Empty term"); return; } #ifdef DEBUG if (!DEBUGL (1)) { term = deVar (term); } #else term = deVar (term); #endif if (realTermLeaf (term)) { symbolPrint (term->left.symb); if (realTermVariable (term)) printf ("V"); if (term->right.runid >= 0) { if (globalLatex) printf ("\\sharp%i", term->right.runid); else printf ("#%i", term->right.runid); } if (term->subst != NULL) { if (globalLatex) printf ("\\rightarrow"); else printf ("->"); termPrint (term->subst); } } if (realTermTuple (term)) { printf ("("); termTuplePrint(term); printf (")"); return; } if (realTermEncrypt (term)) { if (isTermLeaf (term->right.key) && inTermlist (term->right.key->stype, TERM_Function)) { /* function application */ termPrint (term->right.key); printf ("("); termTuplePrint (term->left.op); printf (")"); } else { /* normal encryption */ if (globalLatex) { printf ("\\{"); termTuplePrint (term->left.op); printf ("\\}_{"); termPrint (term->right.key); printf ("}"); } else { printf ("{"); termTuplePrint (term->left.op); printf ("}"); termPrint (term->right.key); } } } } //! Print an inner (tuple) term to stdout, without brackets. /** * The tuple printing only works correctly for normalized terms. * If not, they might are displayed as "((x,y),z)". Maybe that is even * desirable to distinguish them. */ void termTuplePrint (Term term) { if (term == NULL) { printf ("Empty term"); return; } term = deVar(term); while (realTermTuple (term)) { // To remove any brackets, change this into termTuplePrint. termPrint (term->left.op1); printf (","); term = deVar(term->right.op2); } termPrint(term); return; } //! Make a deep copy of a term. /** * Leaves are not copied. *@return If the original was a leaf, then the pointer is simply returned. Otherwise, new memory is allocated and the node is copied recursively. *\sa termDuplicateDeep() */ Term termDuplicate (const Term term) { Term newterm; if (term == NULL) return NULL; if (realTermLeaf (term)) return term; newterm = (Term) memAlloc (sizeof (struct term)); newterm->type = term->type; if (realTermEncrypt (term)) { newterm->left.op = termDuplicate (term->left.op); newterm->right.key = termDuplicate (term->right.key); } else { newterm->left.op1 = termDuplicate (term->left.op1); newterm->right.op2 = termDuplicate (term->right.op2); } return newterm; } //! Make a true deep copy of a term. /** * Currently, it this function is not to be used, so we can be sure leaf nodes occur only once in the system. *@return New memory is allocated and the node is copied recursively. *\sa termDuplicate() */ Term termDuplicateDeep (const Term term) { Term newterm; if (term == NULL) return NULL; newterm = (Term) memAlloc (sizeof (struct term)); if (realTermLeaf (term)) { memcpy (newterm, term, sizeof (struct term)); } else { newterm->type = term->type; if (realTermEncrypt (term)) { newterm->left.op = termDuplicateDeep (term->left.op); newterm->right.key = termDuplicateDeep (term->right.key); } else { newterm->left.op1 = termDuplicateDeep (term->left.op1); newterm->right.op2 = termDuplicateDeep (term->right.op2); } } return newterm; } //! Make a copy of a term, but remove substituted variable nodes. /** * Remove all instantiated variables on the way down. *\sa termDuplicate() */ Term termDuplicateUV (Term term) { Term newterm; if (term == NULL) return NULL; term = deVar (term); if (realTermLeaf (term)) return term; newterm = (Term) memAlloc (sizeof (struct term)); newterm->type = term->type; if (realTermEncrypt (term)) { newterm->left.op = termDuplicateUV (term->left.op); newterm->right.key = termDuplicateUV (term->right.key); } else { newterm->left.op1 = termDuplicateUV (term->left.op1); newterm->right.op2 = termDuplicateUV (term->right.op2); } return newterm; } /* realTermDuplicate make a deep copy of a term, also of leaves. */ Term realTermDuplicate (const Term term) { Term newterm; if (term == NULL) return NULL; newterm = (Term) memAlloc (sizeof (struct term)); if (realTermLeaf (term)) { memcpy (newterm, term, sizeof (struct term)); } else { newterm->type = term->type; if (realTermEncrypt (term)) { newterm->left.op = realTermDuplicate (term->left.op); newterm->right.key = realTermDuplicate (term->right.key); } else { newterm->left.op1 = realTermDuplicate (term->left.op1); newterm->right.op2 = realTermDuplicate (term->right.op2); } } return newterm; } //!Removes a term and deallocates memory. /** * Is meant to remove terms make with termDuplicate. Only deallocates memory * of nodes, not of leaves. *\sa termDuplicate(), termDuplicateUV() */ void termDelete (const Term term) { if (term != NULL && !realTermLeaf (term)) { if (realTermEncrypt (term)) { termDelete (term->left.op); termDelete (term->right.key); } else { termDelete (term->left.op1); termDelete (term->right.op2); } memFree (term, sizeof (struct term)); } } //! Normalize a term with respect to tupling. /** * Avoids problems with associativity by rewriting every ((x,y),z) to * (x,(y,z)), i.e. a normal form for terms, after which equality is * okay. No memory was allocated or deallocated, as only pointers are swapped. * *@return After execution, the term pointed at has been normalized. */ void termNormalize (Term term) { term = deVar (term); if (term == NULL || realTermLeaf (term)) return; if (realTermEncrypt (term)) { termNormalize (term->left.op); termNormalize (term->right.key); } else { /* normalize left hand first,both for tupling and for encryption */ termNormalize (term->left.op1); /* check for ((x,y),z) construct */ if (realTermTuple (term->left.op1)) { /* temporarily store the old terms */ Term tx = (term->left.op1)->left.op1; Term ty = (term->left.op1)->right.op2; Term tz = term->right.op2; /* move node */ term->right.op2 = term->left.op1; /* construct (x,(y,z)) version */ term->left.op1 = tx; (term->right.op2)->left.op1 = ty; (term->right.op2)->right.op2 = tz; } termNormalize (term->right.op2); } } //! Copy a term, and ensure all run identifiers are set to the new value. /** * Strange code. Only to be used on locals, as is stupidly replaces all run identifiers. *@return The new term. *\sa termDuplicate() */ Term termRunid (Term term, int runid) { if (term == NULL) return NULL; if (realTermLeaf (term)) { /* leaf */ if (term->right.runid == runid) return term; else { Term newt = termDuplicate (term); newt->right.runid = runid; return newt; } } else { /* anything else, recurse */ if (realTermEncrypt (term)) { return makeTermEncrypt (termRunid (term->left.op, runid), termRunid (term->right.key, runid)); } else { return makeTermTuple (termRunid (term->left.op1, runid), termRunid (term->right.op2, runid)); } } } //! Determine tuple width of a given term. /** *\sa tupleProject() */ int tupleCount (Term tt) { if (tt == NULL) { return 0; } else { deVar (tt); if (!realTermTuple (tt)) { return 1; } else { return (tupleCount (tt->left.op1) + tupleCount (tt->right.op2)); } } } //! Yield the projection Pi(n) of a term. /** *@param tt Term *@param n The index in the tuple. *@return Returns either a pointer to a term, or NULL if the index is out of range. *\sa tupleCount() */ Term tupleProject (Term tt, int n) { if (tt == NULL) { return NULL; } deVar (tt); if (!realTermTuple (tt)) { if (n > 0) { /* no tuple, adressing error */ return NULL; } else { /* no tuple */ return tt; } } else { /* there is a tuple to traverse */ int left = tupleCount (tt->left.op1); if (n >= left) { /* it's in the right hand side */ return tupleProject (tt->right.op2, n - left); } else { /* left hand side */ return tupleProject (tt->left.op1, n); } } } //! Determine size of term. /** * Determines the size of a term according to some heuristic. * Currently, the encryption operator is weighed as well. *@return Returns a nonnegative integer. *\sa termDistance() */ int termSize(Term t) { if (t == NULL) { return 0; } t = deVar(t); if (realTermLeaf(t)) { return 1; } else { if (realTermEncrypt(t)) { return 1 + termSize(t->left.op) + termSize(t->right.key); } else { return termSize(t->left.op1) + termSize(t->right.op2); } } } //! Determine distance between two terms. /** *@return A float value between 0, completely dissimilar, and 1, equal. *\sa termSize() */ float termDistance(Term t1, Term t2) { int t1s; int t2s; /* First the special cases: no equal subterms, completely equal */ if (isTermEqual(t1,t2)) return 1; t1 = deVar(t1); t2 = deVar(t2); t1s = termSize(t1); t2s = termSize(t2); if (t1 == NULL || t2 == NULL) { return 0; } if (t1->type != t2->type) { /* unequal type, maybe one is a subterm of the other? */ if (t1s > t2s && termOccurs(t1,t2)) { return (float) t2s / t1s; } if (t2s > t1s && termOccurs(t2,t1)) { return (float) t1s / t2s; } return 0; } else { /* equal types */ if (isTermLeaf(t1)) { /* we had established before that they are not equal */ return 0; } else { /* non-leaf recurse */ if (isTermEncrypt(t1)) { /* encryption */ return (termDistance(t1->left.op, t2->left.op) + termDistance(t1->right.key, t2->right.key)) / 2; } else { return (termDistance(t1->left.op1, t2->left.op1) + termDistance(t1->right.op2, t2->right.op2)) / 2; } } } }