/* * This is an improved model of a version of the TLS protocol as modeled by * He,Sundararajan,Datta,Derek and Mitchell in the paper: "A modular * correctness proof of IEEE 802.11i and TLS". * * Modeled by: Cas Cremers * * The original model was broken: the secret was not part of the * handshake, and the handshakes were not hashed. After an e-mail * exchange with Anupam Datta this was cleared up. * * The .cpp file cannot be fed into scyther directly; rather, one needs * to type: (for *nix type systems with cpp) * * cpp tls-HSDDM05-2.cpp >tls-HSDDM05-2.spdl * * in order to generate a valid spdl file for the Scyther. * * This allows for macro expansion, as seen in the next part, which is * particularly useful for expanding the handshakes. * */ #define CERT(a) { a,pk(a) }sk(Terence) #define msg1 X,Nx,pa #define msg2 Ny,pb,CERT(Y) #define handShake1 hash(msg1,msg2,msecret) #define msg3 CERT(X),{handShake1}sk(X),{msecret}pk(Y),hash(msecret,handShake1,clientstring) #define handShake2 hash(msg1,msg2,msg3) #define msg4 hash(msecret,handShake2,serverstring) /* below is just Scyther input and no further macro definitions */ usertype Params, String; const pk,hash: Function; secret sk,unhash: Function; inversekeys(pk,sk); inversekeys(hash,unhash); const clientstring,serverstring: String; const Alice, Bob, Eve: Agent; const Terence: Agent; protocol tls-HSDDM05(X,Y) { role X { fresh Nx: Nonce; fresh msecret: Nonce; fresh pa: Params; var Ny: Nonce; var pb: Params; send_1( X,Y, msg1 ); read_2( Y,X, msg2 ); send_3( X,Y, msg3 ); read_4( Y,X, msg4 ); claim_X1( X, Secret, msecret ); } role Y { var Nx: Nonce; var msecret: Nonce; var pa: Params; fresh Ny: Nonce; fresh pb: Params; read_1( X,Y, msg1 ); send_2( Y,X, msg2 ); read_3( X,Y, msg3 ); send_4( Y,X, msg4 ); claim_Y1( Y, Secret, msecret ); } }