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Chapter 1

Introduction

Note: This is a draft of the new version of the Scyther manual. The manual
may therefore be incomplete at points.
Any feedback is welcome and can be sent to Cas Cremers by e-mail:
cas.cremers@cs.ox.ac.uk.

This is the user manual for the Scyther security protocol verification tool.
The purpose of this manual is to explain the details of the Scyther input language, explain

how to model basic protocols, and how to effectively use the Scyther tool. This manual does not
detail the protocol execution model nor the adversary model used by the tool. It is therefore
highly recommended to read the accompanying book [1]. The book includes a detailed description
of Scyther’s underlying protocol model, security property specifications, and the algorithm.

We proceed in the following way. Some background is given in Chapter 2. Chapter 3 explains
how to install the Scyther tool on various platforms. In Chapter 4 we give a brief tutorial using
simple examples to show the basics of the tool. Then we discuss things in more detail as we
introduce the input language of the tool in Chapter 5. Modeling of basic protocols is described in
Chapter 6, and Chapter 7 describes how to specify security properties. The usage of the GUI
version of tool is then explained in more detail in Section 8. The underlying command-line tool is
described in Section 9. Advanced topics are discussed in Section 10.

Online information

More help can be found online on the Scyther website:

http://users.ox.ac.uk/~coml0529/scyther/index.html

Users are advised to subscribe to the Scyther mailing list, whose details can also be found on the
Scyther website.
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Chapter 2

Background

Scyther is a tool for the formal analysis of security protocols under the perfect cryptography
assumption, in which it is assumed that all cryptographic functions are perfect: the adversary
learns nothing from an encrypted message unless he knows the decryption key. The tool can
be used to find problems that arise from the way the protocol is constructed. This problem is
undecidable in general, but in practice many protocols can be either proven correct or attacks
can be found.

The full protocol model, its assumptions, the basic security properties, and the algorithm
are described in [1]. This manual serves as a companion to the book. Thus, in this manual we
assume the reader is familiar with the formal modeling of security protocols and their properties.

7
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Chapter 3

Installation

Scyther can be downloaded from the following website:
http://users.ox.ac.uk/~coml0529/scyther/

Installation instruction are included in the downloadable Scyther archives. Scyther is available
for the Windows, Linux and Mac OS platforms.
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Chapter 4

Quick start tutorial

Scyther takes as input a security protocol description that includes a specification of intended
security properties, referred to as security claims, and evaluates these.

Start Scyther by executing the scyther-gui.py program in the Scyther directory. The
program will launch two windows: the main window, in which files are edited, and the about

window, which shows some information about the tool.
As an introductory example, we will verify the Needham-Schroeder protocol, and investigate

an attack on it.
Go to the file→open dialog, and open the file ns3.spdl in the Scyther directory. Your main

window should look like the one in Figure 4.
By convention, protocol description files have the extension .spdl (Security Protocol De-

scription Language), but it can have any name. The file used in this example is shown in
Appendix A.

Run the verification tool by selecting verify→verify claims in the menu. A new window
will appear during the verification process. Once verification is completed, the window will be
replaced by the result window, as shown in Figure 4.

The result window shows a summary of the claims in the protocol, and the verification results.
Here one can find whether the protocol is correct, or false. In the next section there will be a full
explanation of the possible outcomes of the verification process. Most importantly, if a protocol
claim is incorrect, then there exists at least one attack on the protocol. A button is shown next
to the claim: press this button to view the attacks on the claim, as in Figure 4.

11
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Figure 4.1: Scyther main window with the file ns3.spdl opened
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Figure 4.2: Scyther result window



14 CHAPTER 4. QUICK START TUTORIAL

Figure 4.3: Scyther attack window



Chapter 5

Input Language

Scyther’s input language is loosely based on a C/Java-like syntax. The main purpose of the
language is to describe protocols, which are defined by a set of roles. Roles, in turn, are defined
by a sequence of events, most of which are events that denote the sending or receiving of terms.
We describe these elements in the following sections.

Comments can start with // or # (for single-line comments) or be enclosed by /* and */ (for
multi-line comments). Note that multi-line comments cannot be nested.

Any whitespace between elements is ignored. It is therefore possible to use whitespace (spaces,
tabs, newlines) to improve readability.

A basic identifier consists of a string of characters from the set of alphanumeric characters as
well as the symbols ^ and -.

The language is case-sensitive, thus NS3 is not the same identifier as ns3.

5.1 A minimal input file

The core elements in a Scyther input file are protocol definitions. A minimal example is the
following:

protocol ExampleProtocol(I,R) {

role I { };

role R { };

};

In the above, we have defined a protocol called “ExampleProtocol” that has two roles, “I” and
“R” by listing them between brackets after the protocol name. Note that we haven’t defined the
behaviour of these roles yet: such behaviours are defined within the curly brackets after the
corresponding role I and role R commands.

5.2 Terms

At the most basic level, Scyther manipulates terms.

5.2.1 Atomic terms

An atomic term can be any identifier, which is usually a string of alphanumeric characters.

15
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Atomic terms can be combined into more complex terms by operators such as pairing and
encryption.

Constants

Freshly generated values

Many security protocols rely on generating random values. They can be specified by declaring
them inside a role definition using the fresh declaration. For example, to generate a random
value Na of type Nonce, we specify:

role X(...) {

fresh Na: Nonce;

send_1(X,Y,Na);

}

Variables

Agents can use variables to store received terms. For example, to receive a nonce into a variable
with name Na, we specify:

role Y(...) {

var Na: Nonce;

recv_1(X,Y,Na);

}

Local declarations, for both freshly generated values as well as variables such as Na, are local
to the role. Thus, one can specify a freshly generated nonce Na in one role and a variable Na in
another role without any conflicts. Variables are rigid: after the first receive event in which they
occur has been executed, they are assigned a value. This value cannot be changed afterwards.

Variables must occur first in receive events: it is not allowed to use uninitialized variables in
send events.

5.2.2 Pairing

Any two terms can combined into a term pair: we write (x,y) for the pair of terms x and y. It is
also allowed to write n-tuples as (x,y,z), which is interpreted by Scyther as ((x,y),z).

5.2.3 Symmetric keys

Any term can act as a key for symmetrical encryption.
The encryption of ni with a term kir is written as:

{ ni }kir

Unless kir is explicitly defined as being part of an asymmetric key pair (explained below),
this is interpreted as symmetric encryption.

A symmetric-key infrastructure is predefined: k(X,Y) denotes the long-term symmetric key
shared between X and Y .
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5.2.4 Asymmetric keys

A public-key infrastructure (PKI) is predefined: sk(X) denotes the long-term private key of X,
and pk(X) denotes the corresponding public key.

As an example, consider the following term. It represents the encryption of some term ni by
the term pk(I). Under normal conventions, this means that the nonce of the initiator (ni) is
encrypted with the public key of the initiator.

{ ni }pk(I)

This term can only be decrypted by an agent who knows the secret key sk(I).

Section 10.1 describes how to model more than one key pair per agent.

5.2.5 Hash functions

Hash functions are essentially encryptions with a function, of which the inverse is not known by
anybody.

They can be used by a global declaration of an identifier to be a hashfunction, e. g.:

hashfunction H1;

As all agents and protocols should have access to such a function, the declaration of hashfunction
is usually global, i. e., defined outside of any protocol definition.

Once declared, they can be used in protocol messages, e. g.:

H1(ni)

5.2.6 Predefined types

Agent Type used for agents.

Function A special type that defines a function term that can take a list of terms as parameter.
By default, it behaves like a hash function: given the term h(x) where h is of type Function,
it is impossible to derive x.

Nonce A standard type that is often used and therefore defined inside the tool.

Ticket A variable of type Ticket can be substituted by any term.

5.2.7 Usertypes

It is possible to define a new type. This can be done using the usertype command:

usertype MyAtomicMessage;

protocol X(I,R) {

role I {

var y: MyAtomicMessage;

recv_1(I,R, y );
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The effect of such a declaration is that variables of the new type can only be instantiated
with messages m of that type, i. e., that have been declared by the global declaration const m:

MyAtomicMessage or the freshly generated fresh m: MyAtomicMessage within a role.
In general, the tool can perform better if more is known about which messages might unify

or not. By defining a usertype, the modeler can inform the tool that a variable can only be
instantiated with terms of that type, and not with, e. g., terms of type Nonce. Conceptually,
one can always write Ticket (which corresponds to all possible messages) for each variable type,
but then one may find false attacks (in case the implementation in fact does check the type of
a message) and the tool will be less likely to verify the property (for an unbounded number of
runs).

5.3 Events

5.3.1 Receive and send events

The recv and send events mark receiving and sending a message, respectively. For example, we
write:

role MyRole(...) {

recv_Label1(OtherRole, MyRole, m1);

send_Label2(MyRole, OtherRole, m2);

}

to specify that role MyRole first receives message m1 from OtherRole and then sends message m2
to OtherRole. The receive event is labeled with label Label1 and the send event is labeled with
Label2.

Usually each send event will have a corresponding recv event. We specify this correspondence
by giving corresponding events the same label.

role MyRole(...) {

send_Label3(MyRole, OtherRole, m2);

}

role OtherRole(...) {

recv_Label3(MyRole, OtherRole, m2);

}

Bang prefix for labels

For some protocols we may want to model sending or receiving to the adversary directly, in which
case we have no corresponding event. If a send or recv event has no corresponding event, Scyther
will output a warning. To surpress this warning, the label can be prefixed by a bang !, e. g.:

send_!1(I,I, LeakToAdversary );

5.3.2 Claim events and Security properties

Claim events are used in role specifications to model intended security properties. For example,
the following claim event models that Ni is meant to be secret.

claim(I, Secret, Ni);
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There are several predefined claim types.

Secret This claim requires a parameter term. Secrecy of this term is claimed as defined in [1].

SKR The verification condition for this claim is equivalent to the Secret claim.

The purpose of this claim is to additionally mark the parameter term as a session-key.
The consequence is that using the session-key reveal adversary rule will now reveal the
parameter term.

If the session-key reveal rule is not enabled, this claim is identical to the Secret claim.

Alive Aliveness (of all roles) as defined in [4].

Weakagree Weak agreement (of all roles) as defined in [4].

Commit, Running Non-injective agreement with a role on a set of data items [4] can be defined
by inserting the appropriate signal claims. In this context, Commit marks the effective claim,
whose correctness requires the existence of a corresponding Running signal in the trace.

These claims are used to model agreement over data, which is explained in Section 7.2.4.

Nisynch Non-injective synchronisation as defined in [1].

Niagree Non-injective agreement on messages as defined in [1].

Reachable When this claim is verified, Scyther will check whether this claim can be reached at
all. It is true iff there exists a trace in which this claim occurs. This can be useful to check
if there is no obvious error in the protocol specification, and is in fact inserted when the
--check mode of Scyther is used.

Empty This claim will not be verified, but simply ignored. It is only useful when Scyther is used
as a back-end for other verification means. For more on this, see Section 10.

5.3.3 Internal computation/pattern match events

We extend the basic set of events from [1] with two events that can be used to model internal
computations.

Match event New in version v1.1 and Compromise-0.8

The first new event is the match event, that is used to specify pattern matching, i. e.,

match(pt,m)

In operational terms, if there exists a well-typed substitution σ such that σpt = m, then this
event can be executed. Upon execution, the substitution is applied to the remaining events of the
role.

This event can be used to model various constructions, such as equality tests, delayed
decryption, checking commitments. They can also be used to model internal computations to
simplify specifications, e. g.:

var X: Nonce;

var Y;

recv(R,I, X);

match(Y, hash(X,I,R) );

send(I,R, Y,{ Y }sk(I) );
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In the above example, we could have replaced Y by hash(X,I,R) throughout the specification,
but this version avoid replication.

Not match event New in version v1.1 and Compromise-0.8

The second new event is the not match event, that is used to specify pattern matching, i. e.,

not match(pt,m)

The operational interpretation is the opposite of the previous event. If there is no substitution σ
such that σpt = m, then the event can be executed.

This event can be used to model, e. g., inequality constraints. For example, the execution
model allows by default agents executing sessions with themselves. In some cases, we want to
exclude such behaviour, because the protocol disallows it. For example,

role A {

not match(A,B);

send (A,B, m1);

}

models a role whose instances only send messages to other agents.
As a more advanced usage, match and not match can be used together in two roles with a

common starting sequence of events to model if ... then ... else constructions.

5.4 Role definitions

Role definitions are sequences of events, i. e., declarations, send, receive, or claim events.

role Server {

var x,y,z: Nonce;

fresh n,m: Nonce;

send_1(Server,Init, m,n );

recv_2(Init,Server, x,y, { z }pk(Server) );

}

5.5 Protocol definitions

A protocol definition takes as a parameter a sequence of roles, which are then defined within its
body.

protocol MyProt(Init,Resp,Server)

{

role Init {

...

}

role Resp {

...

}

role Server {

...

}
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}

Helper protocols

It is possible to prepend an “@” symbol before a protocol name. This has no effect on the protocol
model, nor on the outcome of the analysis. The “@” is only used when rendering output graphs:
the intent is to mark the protocol as a “helper protocol”. Such protocols are often used to model
additional adversary capabilities, see Section 10 for examples. When rendering output graphs,
Scyther collapses role instances of helper protocols into single nodes. This can make the graphs
more readable.

Symmetric-role protocols

Some adversary-compromise rules, such as SKR and LKRaftercorrect depend on a partnering
function. For protocols that are entirely symmetric in their roles and key computations (such as
HMQV), this is not the appropriate partnering function. To use the correct partnering function,
the protocol needs to be annotated as a symmetric-role protocol. This instructs Scyther to use
the appropriate partnering function.

symmetric-role protocol MyProt(Init,Resp)

{

role Init {

...

}

role Resp {

...

}

}

5.6 Global declarations

In many applications global constants are used. These include, for example, string constants,
labels, or protocol identifiers.

They are modeled and used in the following way:

usertype String;

const HelloWorld: String;

protocol hello(I,R)

{

role I {

send_1(I,R, HelloWorld);

}

role R {

recv_1(I,R, HelloWorld);

}

}
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5.7 Miscellaneous

5.7.1 Macro New in version v1.1 and Compromise-0.8

It is possible to define macros, i. e., abbreviations for particular term. The syntax used to define
these abbreviations is the following:

macro MyShortCut = LargeTerm;

For example, for a protocol that contains complex messages or repeating elements, macros can be
used to simplify the protocol specification:

hashfunction h;

protocol macro-example-one(I,R) {

role I {

fresh nI: Nonce;

macro m1 = h(I,ni);

send_1(I,R, { m1 }pk(R) );

claim(I, Secret, m1);

}

role R {

var X: Ticket;

recv_1(I,R, { X }pk(R) );

}

}

Note that macros have global scope, and are handled at the syntactical level. This also allows for
global abbreviations of protocol messages, e. g.:

hashfunction h;

macro m1 = { I,R, nI, h(nI,R) }pk(R);

protocol macro-example-two(I,R) {

role I {

fresh nI: Nonce;

send_1(I,R, m1 );

}

role R {

var nI: Nonce;

recv_1(I,R, m1 );

}

}

Note that in the above example, nI is a freshly generated nonce in the I role, and a variable in
the R role. Because the macro definitions are unfolded syntactically, the same macro can be used
to refer to both terms.

5.7.2 Include

It is possible to import other files in a protocol specification:
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include "filename";

where filename denotes the name of the file that will be included at this point. Using this
command, it is possible to share, e. g., a set of common definitions between files. Typically this
will include definitions for the key structures, and (untrusted) agent names. Nested use of this
command is possible.

5.7.3 one-role-per-agent New in version v1.1 and Compromise-0.8

The operational semantics allow agents to perform any roles, and even multiple different roles in
parallel. This modeling choice corresponds to the worst possible scenario, in which the adversary
has the most options to exploit. However, in many concrete settings, agents perform only one
role. For example, the set of servers may be disjoint from the set of clients, or the set of RFID
tags may be disjoint from the set of readers. In such cases, we do not need to consider attacks
that exploit that an agent can perform multiple roles. This can be modeled by the following
statement:

option "--one-role-per-agent"; // disallow agents in multiple roles

This causes Scyther to ignore attacks in which agents perform multiple roles. Phrased differently,
this corresponds to the situation in which each role is performed by a dedicated set of agents.

5.8 Language BNF

The full BNF grammar for the input language is given below. In the strict language definition,
there are no claim terms such as Niagree and Nisynch, and neither are there any predefined
type classes such as Agent. Instead, they are predefined constant terms in the Scyther tool itself.

5.8.1 Input file

An input file is simply a list of spdl constructions, which are global declarations or protocol
descriptions.

⟨spdlcomplete⟩ ::= ⟨spdl⟩ { ’;’ ⟨spdl⟩ }

⟨spdl⟩ ::= ⟨globaldeclaration⟩
| ⟨protocol⟩

5.8.2 Protocols

A protocol is simply a container for a set of roles. Because we use a role-based approach to
describing roles, the protocol container in fact only affects the naming of the roles: a role “I” in
a protocol “ns3” will internally be assigned the name “ns3.I”. This is used to make role names
globally unique.

⟨protocol⟩ ::= ‘protocol’ ⟨id⟩ ‘(’ ⟨termlist⟩ ‘)’ ‘{’ ⟨roles⟩ ‘}’ [ ‘;’ ]
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5.8.3 Roles

⟨roles⟩ ::= ⟨role⟩ [ ⟨roles⟩ ]
| ⟨declaration⟩ [ ⟨roles⟩ ]

⟨role⟩ ::= [ ‘singular’ ] ‘role’ ⟨id⟩ ‘{’ ⟨roledef ⟩ ‘}’ [ ‘;’ ]

⟨roledef ⟩ ::= ⟨event⟩ [ ⟨roledef ⟩ ]
| ⟨declaration⟩ [ ⟨roledef ⟩ ]

5.8.4 Events

⟨event⟩ ::= ‘recv’ ⟨label⟩ ‘(’ ⟨from⟩ ‘,’ ⟨to⟩ ‘,’ ⟨termlist⟩ ‘)’ ‘;’
| ‘send’ ⟨label⟩ ‘(’ ⟨from⟩ ‘,’ ⟨to⟩ ‘,’ ⟨termlist⟩ ‘)’ ‘;’
| ‘claim’ [ ⟨label⟩ ] ‘(’ ⟨from⟩ ‘,’ ⟨claim⟩ [ ‘,’ ⟨termlist⟩ ] ‘)’ ‘;’

⟨label⟩ ::= ‘_’ ⟨term⟩

⟨from⟩ ::= ⟨id⟩

⟨to⟩ ::= ⟨id⟩

⟨claim⟩ ::= ⟨id⟩

5.8.5 Declarations

⟨globaldeclaration⟩ ::= ⟨declaration⟩
| ‘untrusted’ ⟨termlist⟩ ‘;’
| ‘usertype’ ⟨termlist⟩ ‘;’

⟨declaration⟩ ::= [ ‘secret’ ] ‘const’ ⟨termlist⟩ [ ‘:’ ⟨type⟩ ] ‘;’
| [ ‘secret’ ] ‘fresh’ ⟨termlist⟩ [ ‘:’ ⟨typelist⟩ ] ‘;’
| [ ‘secret’ ] ‘var’ ⟨termlist⟩ [ ‘:’ ⟨typelist⟩ ] ‘;’
| ‘secret’ ⟨termlist⟩ [ ⟨type⟩ ] ‘;’
| ‘inversekeys’ ‘(’ ⟨term⟩ ‘,’ ⟨term⟩ ‘)’ ‘;’
| ‘compromised’ ⟨termlist⟩ ‘;’

⟨type⟩ ::= ⟨id⟩

⟨typelist⟩ ::= ⟨type⟩ { ‘,’ ⟨type⟩ }

5.8.6 Terms

⟨term⟩ ::= ⟨id⟩
| ‘{’ ⟨termlist⟩ ‘}’ ⟨key⟩
| ‘(’ ⟨termlist⟩ ‘)’
| ⟨id⟩ ‘(’ ⟨termlist⟩ ‘)’

⟨key⟩ ::= ⟨term⟩

⟨termlist⟩ ::= ⟨term⟩ { ‘,’ ⟨term⟩ }



Chapter 6

Modeling security protocols

6.1 Introduction

The correct modeling of a security protocol for analysis in the Scyther tool requires a basic
understanding of the underlying symbolic model. This model is explained in detail in [1].

Roughly speaking, the symbolic analysis focuses on the following aspects:

• Logical message components and their intended function within the protocol (public versus
secret, freshly generated in each run or constant)

• Message structure (pairing, encryption, signing, hashing)

• Message flow (order, involved agents)

Many other elements are abstracted away. For example, bit strings are abstracted into terms, bit
strings that occur with negligble probability are abstracted away, and more complext control flow
constructs such as loops are often unfolded for a (low) finite number of times.

6.2 Example: Needham-Schroeder Public Key

As an example, we show how to model a simple protocol.
Figure 6.1 depicts the Needham-Schroeder Public Key protocol. For simplicity, we have only

displayed the claim by each role that the initiator nonce ni is secret.
We start off the protocol description by adding a multi-line comment that describes the

protocol and other interesting details. Multi-line comments start with /* and end with */.

/*

* Needham-Schroeder protocol

*/

The protocol uses the default public/private key infrastructure: an agent A has a key pair
(pk(A),sk(A)).

The protocol has two roles: the intiator role I and the responder role R. We also add a single
line comment, starting with //.

// The protocol description

protocol ns3(I,R)

25



26 CHAPTER 6. MODELING SECURITY PROTOCOLS

{

Scyther works with a role-based description of the protocols. We first model the initiator role.
This role has two values that are local to the role: the nonce that is created by I and the nonce
that is received. We have to declare them both.

role I

{

fresh ni: Nonce;

var nr: Nonce;

We now model the communication behaviour of the protocol. Needham-Schroeder has three
messages, and the initiator role sends the first and last of these. Note the labels (e. g., 1) at the
end of the send and recv keywords: these serve merely to retain the information of the connected
arrows in the message sequence chart.

send_1(I,R, {I,ni}pk(R) );

recv_2(R,I, {ni,nr}pk(I) );

send_3(I,R, {nr}pk(R) );

Finally, we add the security requirements of the protocol. Without such claims, Scyther does
not know1 what needs to be checked.

Here we have chosen to check for secrecy of the generated and received nonce, and will check
for non-injective agreement and synchronisation.

claim_i1(I,Secret,ni);

claim_i2(I,Secret,nr);

claim_i3(I,Niagree);

claim_i4(I,Nisynch);

}

This completes the specification of the initiator role.
For this simple protocol, the responder role is very similar to the initiator role2. In fact, there

are only a few differences:

1. The keywords var and fresh have swapped places: ni was created by I and a freshly
generated value there, but for the role R it is the received value and thus a variable.

2. The keywords send and recv have swapped places.

3. The claims should have unique labels, so they have changed, and the role executing the
claim is now R instead of I.

The complete role description for the responder looks like this:

role R

{

var ni: Nonce;

fresh nr: Nonce;

recv_1(I,R, {I,ni}pk(R) );

send_2(R,I, {ni,nr}pk(I) );

1If you are unsure about the claims, you can also use the --auto-claims switch to automatically generate these
at run-time.

2In general, the transformation is not that simple, but for many protocols this will suffice.
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recv_3(I,R, {nr}pk(R) );

claim_r1(R,Secret,ni);

claim_r2(R,Secret,nr);

claim_r3(R,Niagree);

claim_r4(R,Nisynch);

}

}

The full protocol description file for the Needham-Schroeder protocol is given in Appendix A.
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pk(R), sk(I)

I

pk(I), sk(R)

R

nonce ni

1 {I, ni}pk(R)

nonce nr

{R, ni, nr}pk(I) 2

3 {nr}pk(R)

i1

secret(ni)

r1

secret(ni)

msc Needham-Schroeder Public Key

1

Figure 6.1: A message sequence chart description



Chapter 7

Specifying security properties

7.1 Specifying secrecy

7.2 Specifying authentication properties

7.2.1 Aliveness

7.2.2 Non-injective synchronisation

7.2.3 Non-injective agreement

7.2.4 Agreement over data

In order to specify data agreement, e. g., that the role I agrees with the role R on a set of terms,
e. g., the nonces ni and nr, one inserts two claims:

1. At the end of the I role, insert claim(I,Commit,R,ni,nr);

2. In the R, just before the last send (in case of a protocol with multiple roles: the last send
that causally precedes the claim in the I role), insert claim(R,Running,I,ni,nr);

For an example of the use of these claims, see the “ns3.spdl” input file in the Scyther distribution.
For a formal definition of the signals, see [4].
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Chapter 8

Using the Scyther tool GUI

The Scyther tool can be used in two main ways. First, through the graphical user interface (GUI)
and second, through the command-line interface. For most users the first option is preferred.

In this section we detail the Scyther output when used through the GUI.

8.1 Results

As shown before, verifying the Needham-Schroeder public key protocol yields the following results
as in Figure 8.1.

The interpretation is as follows: all the claims of the initiator role ns3,I are correct for an
unbounded number of runs.

Unfortunately, all the claims of the responder role are false. Scyther reports that it found at
least one attack for each of those four claims. We could choose to view these attacks: this will be
shown in Section 8.3.

In the result window, Scyther will output a single line for each claim. The line is divided into
several columns. The first column shows the protocol in which the claim occurs, and the second
shows the role. In the third column a unique claim identifier is shown, of the form p,l, where p
is the protocol and l is the claim label.1. The fourth column displays the claim type and the
claim parameter.

Under the header Status we find two columns. The fifth column gives the actual result of the
verification process: it will yield Fail when the claim is false, and Ok when the claim is correct.
The sixth column refines the previous statement: in some cases, the Scyther verification process
is not complete (which will be explored in more detail in the next section). If this column states
Verified, then the claim is provably true. If the column states Falsified, then the claim is
provably false. If the column is empty, then the statement of fail/ok depends on the specific
bounds setting.

The seventh column, Comments, serves to explain the status of the results further. In particular,
the column contains a single sentences. We describe the possible results below.

• At least X attack(s)

Some attacks were found in the state space: however, due to the undecidability of the
problem, or because of the branch and bround structure of the search, we cannot be sure
that there are no other attack states.

1This includes the protocol name, which is important when doing multi-protocol analysis.
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Figure 8.1: Scyther results for the Needham-Schroeder protocol

In the default setup, Scyther will stop the verification process after an attack is found.

• Exactly X attack(s)

Within the statespace, there are exactly this many attacks, and no others.

• At least X pattern(s)

• Exactly X pattern(s)

These correspond exactly to the previous two, but occur in case of a ‘Reachable’ claim.
Thus, the states that are found are not really attacks but classes of reachable states.

• No attacks within bounds

No attack was found within the bounded statespace, but there can possibly be an attack
outside the bounded statespace.

• No attacks

No attack was found within the (bounded or unbounded) statespace, and a proof can be
constructed that there is no attack even when the statespace is unbounded. Thus, the
security property has been succesfully verified.
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Note that because of the nature of the algorithm, this result can even be obtained when
the statespace is bounded.

8.2 Bounding the statespace

During the verification process, the Scyther tool explores a proof tree that covers all possible
protocol behaviours. The default setting is to bound the size of this tree in some way, ensuring
that the verification procedure terminates. However, importantly, even if the size of this proof
tree is bounded, unbounded verification may still be achieved.

In most cases, the verification procedure will terminate and return results before ever reaching
the bound. However, if the verification procedure reaches the bound, this is reported in the result
window, e. g.:

No attack within bounds

This should be interpreted as: Scyther did not find any attacks, but because it reached the
bound, it did not explore the full tree, and it is possible that there are still attacks on the protocol.

The default way of bounding the maximum number of runs, or protocol instances. This can
be changed in the Settings tab of the main window. If the maximum number of runs is, e. g.,
5, and Scyther reports No attack within bounds, this means that there exist no attacks that
involve 5 runs or less. However, there might exist attacks that involve 6 runs or more.

For some protocols, increasing the maximum number of runs can lead to complete results
(i.e. finding an attack or being sure that there is no attack), but for other protocols the result will
always be No attack within bounds.

Note that the verification time usually grows exponentially with respect to the maximum
number of runs.

8.3 Attack graphs

In Figure 8.3 we show an attack window in more detail.
The basic elements are arrows and several kinds of boxes. The arrows in the graph represent

ordering constraints (caused by the prefix-closedness of events in the protocol roles, or by
dependencies in the intruder knowledge). The boxes represent creation of a run, communication
events of a run, and claim events.

8.3.1 Runs

Each vertical axis represents a run (an instance of a protocol role). Thus, in this attack we see
that there are two runs involved. Each run starts with a diamond shaped box. This represents
the creation of a run, and is used to give information about the run.

For the run on the left-hand side in the attack we have this information:

Run #1

Agent2 in role I

I -> Agent2

R -> Agent1
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Figure 8.2: Scyther attack window

Each run is assigned a run identifier (here 1), which is an arbitrary number that enables us to
uniquely identify each run. This run executes the R role of the protocol. It is being executed by
an agent called Agent1, who thinks he is talking to Agent2. Note that although run 2 is being
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executed by Agent2, this agent does not believe he is talking to Agent1.

Run #2

Agent2 in role I

I -> Agent2

R -> Eve

In the run on the right, we see This run represents an instance of the role I. From the second
line we can see which agent is executing the run, and who he thinks he is talking to. In this
example, the run is executed by an agent called Agent2, who thinks the responder role is being
executed by the untrusted agent Eve.2

Additionally, the run headers contain information on the freshly generated values (e. g., run 1
generates nr#1) and information on the instantiation of the local variables (e. g., run 1 instantiates
its variable ni with the nonce ni#2 or run 2.

8.3.2 Communication events

Send events denote the sending of a message. The first send occurs in this attack is the first send
event of run 2.

send_1(Eve, { Agent#0, ni#2 }pk(Eve) )

Every time a message is sent, it is effectively given to the intruder. In this case, because the
intruder knows the secret key sk(Eve) of the agent Eve, he can decrypt the message and learns
the value of the nonce ni#2.

Receive events correspond to the successful reception of a message. The first receive event
that can occur in this attack is the first receive event of run 0.

recv_1(Agent#0, { Agent#0, ni#2 }pk(Agent#1) )

This tells us that the agent executing this run, Agent#1, reads a message that is apparently
coming from Agent#1. The message that is received is { Agent#0, ni#2 }pk(Agent#1) : the
name of the agent he thinks he is communicating with and the nonce ni#2, encrypted with his
public key.

The incoming arrow does not indicate a direct sending of the message. Rather, it denotes an
ordering constraint: this message can only be received after something else has happened. In
this case, we see that the message can only be received after run 2 sends his initial message. The
reason for this is the nonce ni#2: the intruder cannot predict this nonce, and thus has to wait
until run 2 has generated it.

In the graph the connecting arrow is red and has a label “construct” with it: this is caused by
the fact that the message sent does not correspond to the message that is received. We know
the intruder can only construct the message to be received after the sent message, and thus it
must be the case that he uses information from the sent message to construct the message that is
received. Other possibilities include a green and a yellow arrow. A yellow arrow indicates that a
message was sent, and received in exactly the same form: however, the agents disagree about
who was sending a message to whom. It is therefore labeled with “redirect” because the intruder

2Because this agent is talking to the untrusted agent, of course all information is leaked, and no guarantees can
be given.
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must have redirected the message. A green arrow (not in the picture) indicating that a message is
received exactly the same as it was sent, representing a normal message communication between
two agents.

Note that a recv event without an incoming arrow denotes that a term is received that can
be generated from the initial knowledge of the intruder. There is no such event in the example,
but this can occur often. For example, if a role reads a plain message containing only an agent
name, the intruder can generate the term from his initial knowledge.

8.3.3 Claims



Chapter 9

Using the Scyther command-line
tools

All of the features offered by the Scyther GUI are also available through command-line tools.
Additionally, the command-line tools offer some features that currently cannot be accessed through
the GUI.

Depending on your platform, the Scyther directory contains one of the following executables:

• Scyther/scyther-linux

• Scyther/scyther-w32

• Scyther/scyther-mac

In the following, we assume that the linux version is used. If you have a different version, please
replace scyther-linux in the below by the executable for your platform.

To get a list of (some) of the command-line options, run the executable with the --help

switch, e.g.:

scyther-linux --help

To analyze the Needham-Schroeder protocol and generate a .dot file (the input language for the
Graphviz tool) for the attacks, use

scyther-linux --dot-output --output=ns3-attacks.dot ns3.spdl

The resulting output file can then be rendered by graphviz, e.g.:

dot -Tpdf -O ns3-attacks.dot

This yields several PDF files ns3-attacks.dot[.N].pdf that contain the attack graphs.
To get a more complete list of command-line options, run the executable with the --expert

--help switch, e.g.:

scyther-linux --expert --help
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Chapter 10

Advanced topics

10.1 Modeling more than one asymmetric key pair

Asymmetric keys are typically modeled as two functions: one function that maps the agents to
their public keys, and another function that maps agents to their secret keys.

By default, each agent x has a public/private key pair (pk(x), sk(x)).
To model other asymmetric keys, we first define the two functions, which are for example

named pk2 for the public key function, and sk2 for the secret key function.

const pk2: Function;

secret sk2: Function;

We also declare that these functions represent asymmetric key pairs:

inversekeys (pk2,sk2);

If defined in this way, a term encrypted with pk2(x) can only be decrypted with sk2(x) and
vice versa.

10.2 Approximating equational theories

The operational semantics underlying Scyther currently only consider syntactic equality: two
(ground) terms are equal if and only if they are syntactically equivalent. However, there are
several common cryptographic constructions that are more naturally modeled by using certain
equalities. For example:

1. gab (mod N) and gba (mod N), to model Diffie-Hellman exponentiation.

2. k(A,B) and k(B,A), to model bidirectional long-term keys.

Although Scyther does not provide direct support for such equational theories, there exists a
straightforward underapproximation.

The core idea is that instead of modeling the term equality, we provide the adversary with the
ability to learn all terms in an equivalence class if he learns one of its elements. For example, for
the equivalence class {k(A,B), k(B,A)} we can provide the adversary with the ability to learn
k(B,A) from k(A,B), and vice versa. We can model this by introducing an appropriate helper
protocol (denoted by the prefix ’@’):
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protocol @keysymmNaive(X) {

role X {

var Y: Agent;

recv_!1(X,X, k(X,Y) );

send_!2(X,X, k(Y,X) );

}

}

Because the role can be instantiated for any agents X and Y , this covers all possible combinations
of agents.

The above naive approximation can be significantly improved. One obvious and practically
relevant omission is that the adversary usually learns encrypted messages, but not the key. In
such cases, we still would like to model that { m }k(A,B) = { m }k(B,A). Thus we adapt our
helper protocol:

protocol @keysymmInefficient(X,Y) {

role X {

var Y: Agent;

recv_!1(X,X, k(X,Y) );

send_!2(X,X, k(Y,X) );

}

role Y {

var X: Agent;

var m: Ticket;

recv_!1(Y,Y, { m }k(X,Y) );

send_!2(Y,Y, { m }k(Y,X) );

}

}

If the protocol contains further terms in which the symmetric keys appear in other positions,
such as in nested encryptions or hashes, we would add further roles.

The above approximation is often inefficient in practice. We can improve performance by
making the helper protocol rules more tight, i. e., by exploiting more type information about the
protocol. For example, if the protocol transmits two types of encrypted messages:

1. { I,nI,nR }k(I,R) , and

2. { nI }k(I,R) ,

then we would modify the helper protocol in the following way:

protocol @keysymm(X,Y,Z) {

role X {

var Y: Agent;

recv_!1(X,X, k(X,Y) );

send_!2(X,X, k(Y,X) );

}

role Y {

var X,Z: Agent;

var n1,n2: Nonce;
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recv_!1(Y,Y, { Z,n1,n2 }k(X,Y) );

send_!2(Y,Y, { Z,n1,n2 }k(Y,X) );

}

role Z {

var X,Y: Agent;

var n1: Nonce;

recv_!1(Z,Z, { n1 }k(X,Y) );

send_!2(Z,Z, { n1 }k(Y,X) );

}

}

In general, one would manually inspect the protocol and extract all positions in which a term from
an equivalence class occurs as a subterm. For each of these positions, we model an appropriate
role in the helper protocols.

This is also used to model, for example, Diffie-Hellman exponentiation. For exponentiation
we introduce an abstract function symbol, e. g., exp, and a public constant g. We then introduce
a helper protocol with roles to model that exp(exp(g,X),Y) = exp(exp(g,Y),X).

In practice, this type of underapproximation has proven to be extremely effective, to the point
that all known attacks on real-world protocols that can be modeled using the “real” equational
theory, are found by Scyther when using the underapproximation.

One caveat is that while this approximation works well for secrecy and data-agreement, it
can cause message-based agreement properties (such as synchronisation) to fail, because their
message equality checks are syntactical. These checks are not affected by the introduction of
helper protocols.

10.3 Modeling time-stamps and global counters

Scyther’s underlying protocol model currently does not provide support for variables that are
shared among the runs of an agent. Effectively, each run starts with a “clean slate”, independent
of any runs that have been executed previously. In other words, globally update state can not be
modeled directly.

In the following sections we provide some modeling approaches for common problems.

10.3.1 Modeling global counters

Globally incremented counters can be modeled using freshly generated values. This ensures that
each run uses a different value. The model is coarse in the sense that the recipient of such a
counter cannot check that it is the successor of the previous value of the counter.

10.3.2 Modeling time-stamps using nonces

There are at least two ways to model time-stamps.
The first model is more appropriate for protocols where the probability that a given time-stamp

value is accepted by two runs is very low. This occurs when time-stamps have great precision or
when two runs occur only sequentially, possibly with some delay time in between. In this case,
one can model time-stamps as freshly generated values, e. g., nonces. To cater for the fact that
the adversary typically knows the time (and thus can also predict time-stamps), we prepend a
send event to the role that provides the adversary with the value of the time-stamp that will
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be used. For example, we would prepend the send with label !T1 for time-stamp T1 as in the
following example:

usertype Timestamp;

protocol MyProtocol(Server,Client) {

role Server{

fresh T1: Timestamp;

/* Time-stamps are unique per run */

send_!T1(Server, Server, T1);

...

/* Server uses time-stamp value */

send_2(Server,Client, { Server, T1 }pk(Client) );

...

}

}

10.3.3 Modeling time-stamps using variables

The second model is more appropriate when it is reasonable that two runs may accept the same
time-stamp value. This is common for coarse time-stamps, or for roles that are typically executed
with high parallelism, such as server roles. In such cases, one can instead model timestamps as
values that are determined by the adversary. In contrast to the previous solution, this is done by
prepending a receive event. For example:

usertype Timestamp;

protocol MyProtocol(Server,Client) {

role Server{

var T1: Timestamp;

/* Adversary chooses time-stamp value */

recv_!T1(Server, Server, T1);

...

/* Server uses time-stamp value */

send_2(Server,Client, { Server, T1 }pk(Client) );

...

}

}

10.4 Multi-protocol attacks

Scyther can be used to check for so-called multi-protocol attacks (closely related concepts are cross-
protocol attacks and chosen protocol attacks). These attacks depend on the interactions between
different (sub)protocols: sometimes the adversary can use messages or message components from
one protocol to attack another. For more information on this type of attack we refer to [2, 3].

The easiest way to check for multi-protocol attacks in Scyther is to combine two protocol
descriptions into a single file, i.e., create a new .spdl file and paste into this file two other .spdl



10.4. MULTI-PROTOCOL ATTACKS 43

files. The resulting file models an environment in which both protocols are running. Use Scyther
to evaluate the claims in the combined file.
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Chapter 11

Further reading
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Appendix A

Full specification for
Needham-Schroeder public key

/*

* Needham-Schroeder protocol

*/

// The protocol description

protocol ns3(I,R)

{

role I

{

fresh ni: Nonce;

var nr: Nonce;

send_1(I,R, {I,ni}pk(R) );

recv_2(R,I, {ni,nr}pk(I) );

claim(I,Running,R,ni,nr);

send_3(I,R, {nr}pk(R) );

claim_i1(I,Secret,ni);

claim_i2(I,Secret,nr);

claim_i3(I,Alive);

claim_i4(I,Weakagree);

claim_i5(I,Commit,R,ni,nr);

claim_i6(I,Niagree);

claim_i7(I,Nisynch);

}

role R

{

var ni: Nonce;

fresh nr: Nonce;

recv_1(I,R, {I,ni}pk(R) );
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claim(R,Running,I,ni,nr);

send_2(R,I, {ni,nr}pk(I) );

recv_3(I,R, {nr}pk(R) );

claim_r1(R,Secret,ni);

claim_r2(R,Secret,nr);

claim_r3(R,Alive);

claim_r4(R,Weakagree);

claim_r5(R,Commit,I,ni,nr);

claim_r6(R,Niagree);

claim_r7(R,Nisynch);

}

}



Appendix B

Obsolete constructions

B.1 Read event

Note that in some protocol description files one may find the read keyword: this is obsolete
syntax and can safely be substituted by recv.
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bidirectional keys, 39
BNF, 23

case-sensitive, 15
chosen protocol attacks, 42
claim, 18
claim event, 18
command-line tools, 37
comments, 15
Commit, 19, 29
communication event, 35
const, 21
constant, 16
construct, 35
counter, see global counter
cross-protocol attacks, 42

data agreement, 19, 29
define macro, 22
Diffie-Hellman exponentiation, 39
downloading Scyther, 9

Empty, 19
equational theories, 39

event
claim, 18
match, 19
not match, 20
recv, 18
send, 18

events, 18
exactly X attack(s), 32
exactly X pattern(s), 32
exponentiation, see Diffie-Hellman exponentia-

tion

freshly generated value, 16
Function, 17

global constant, 16
global counter, 41
global declarations, 21
GUI, 31

using Scyther without GUI, 37

hash functions, 17
hashfunction, 17
helper protocol, 21, 39

identifier, 15
import file, 22
include, 22
input file, 22
installing Scyther, 9
internal computation events, 19

k(X,Y), 16

macro, 22
match event, 19
message agreement, 19
multi-protocol attacks, 42
multiple asymmetric key pairs per agent, 39
multiple roles per agent, 23

Needham-Schroeder protocol, 25

52



INDEX 53

Niagree, 19
Nisynch, 19
no attacks, 32
no attacks within bounds, 32
non-injective agreement, 19, 29
non-injective synchronisation, 19
Nonce, 17
nonce, 16
not match event, 20
NS, see Needham-Schroeder protocol

one role per agent, 23
one-role-per-agent, 23

pairing, 16
pattern match events, 19
pk(X), 17
protocol definition, 20

quick start tutorial, 11

random value, 16
Reachable, 19
read, 49
recv, 18
role definition, 20
run, 33
Running, 19, 29

Scyther website, 5
Secret, 19
security properties, 18
send, 18
sk(X), 17
SKR, 19
symmetric keys, 16
symmetric-role protocol, 21
synchronisaton, 19
syntactic equality, 39

Ticket, 17
time-stamps, 41–42
tupling, 16

usertype, 17

var, 16
variable, 16
verification, 32

Weakagree, 19
website, see Scyther website
whitespace, 15


