- Made a start with the arachne latex output. It's a mess currently.

This commit is contained in:
ccremers 2005-03-07 15:38:01 +00:00
parent 56b083205a
commit 197117f2fe

View File

@ -682,7 +682,337 @@ bind_new_run (const Binding b, const Protocol p, const Role r,
return flag; return flag;
} }
//! Iterate over all events that have an incoming arrow to the current one (forgetting the intruder for a moment)
void
iterate_incoming_arrows (void (*func) (), const int run, const int ev)
{
/**
* Determine wheter to draw an incoming arrow to this event.
* We check all other runs, to see if they are ordered.
*/
int run2;
run2 = 0;
while (run2 < sys->maxruns)
{
if (run2 != run && sys->runs[run2].protocol != INTRUDER)
{
// Is this run before the event?
int ev2;
int found;
found = 0;
ev2 = sys->runs[run2].length;
while (found == 0 && ev2 > 0)
{
ev2--;
if (graph[graph_nodes (nodes, run2, ev2, run, ev)] != 0)
{
found = 1;
}
}
if (found == 1)
{
// It is before the event, and thus we would like to draw it.
// However, if there is another path along which we can get here, forget it
/**
* Note that this algorithm is similar to Floyd's algorithm for all shortest paths.
* The goal here is to select only the path with distance 1 (as viewed from the regular runs),
* so we can simplify stuff a bit.
* Nevertheless, using Floyd first would probably be faster.
*/
int other_route;
int run3;
int ev3;
other_route = 0;
run3 = 0;
ev3 = 0;
while (other_route == 0 && run3 < sys->maxruns)
{
if (sys->runs[run3].protocol != INTRUDER)
{
ev3 = 0;
while (other_route == 0 && ev3 < sys->runs[run3].length)
{
if (graph
[graph_nodes
(nodes, run2, ev2, run3, ev3)] != 0
&&
graph[graph_nodes
(nodes, run3, ev3, run, ev)] != 0)
{
// other route found
other_route = 1;
}
ev3++;
}
}
run3++;
}
if (other_route == 0)
{
func (run2, ev2);
}
}
}
run2++;
}
}
//! Iterate over all events that have an outgoing arrow from the current one (forgetting the intruder for a moment)
void
iterate_outgoing_arrows (void (*func) (), const int run, const int ev)
{
/**
* Determine wheter to draw an incoming arrow to this event.
* We check all other runs, to see if they are ordered.
*/
int run2;
run2 = 0;
while (run2 < sys->maxruns)
{
if (run2 != run && sys->runs[run2].protocol != INTRUDER)
{
// Is this run after the event?
int ev2;
int found;
found = 0;
ev2 = 0;
while (found == 0 && ev2 < sys->runs[run2].length)
{
if (graph[graph_nodes (nodes, run, ev, run2, ev2)] != 0)
{
found = 1;
}
ev2++;
}
if (found == 1)
{
// It is after the event, and thus we would like to draw it.
// However, if there is another path along which we can get there, forget it
/**
* Note that this algorithm is similar to Floyd's algorithm for all shortest paths.
* The goal here is to select only the path with distance 1 (as viewed from the regular runs),
* so we can simplify stuff a bit.
* Nevertheless, using Floyd first would probably be faster.
*/
int other_route;
int run3;
int ev3;
other_route = 0;
run3 = 0;
ev3 = 0;
while (other_route == 0 && run3 < sys->maxruns)
{
if (sys->runs[run3].protocol != INTRUDER)
{
ev3 = 0;
while (other_route == 0 && ev3 < sys->runs[run3].length)
{
if (graph
[graph_nodes
(nodes, run, ev, run3, ev3)] != 0
&&
graph[graph_nodes
(nodes, run3, ev3, run2, ev2)] != 0)
{
// other route found
other_route = 1;
}
ev3++;
}
}
run3++;
}
if (other_route == 0 || 1 == 1)
{
func (run2, ev2);
}
}
}
run2++;
}
}
//! Display the current semistate using LaTeX output format.
/**
* This is not as nice as we would like it. Furthermore, the function is too big, and needs to be split into functional parts that
* will allow the generation of dot code as well.
*/
void
latexSemiState ()
{
static int attack_number = 0;
int run;
Protocol p;
int *ranks;
int maxrank;
void node (const int run, const int index)
{
if (sys->runs[run].protocol == INTRUDER)
{
if (sys->runs[run].role == I_M)
{
eprintf ("m0");
}
else
{
eprintf ("i%i", run);
}
}
else
{
eprintf ("r%ii%i", run, index);
}
}
// Open graph
attack_number++;
eprintf ("\\begin{msc}{Attack on ");
p = (Protocol) current_claim->protocol;
termPrint (p->nameterm);
eprintf (", role ");
termPrint (current_claim->rolename);
eprintf (", claim type ");
termPrint (current_claim->type);
eprintf ("}\n%% Attack number %i\n", attack_number);
eprintf ("\n");
// Needed for the bindings later on: create graph
goal_graph_create (); // create graph
if (warshall (graph, nodes) == 0) // determine closure
{
eprintf
("%% This graph was not completely closed transitively because it contains a cycle!\n");
}
ranks = memAlloc (nodes * sizeof (int));
maxrank = graph_ranks (graph, ranks, nodes); // determine ranks
// Draw headings (boxes)
run = 0;
while (run < sys->maxruns)
{
if (sys->runs[run].protocol != INTRUDER)
{
eprintf ("\\declinst{r%i}{}{run %i}\n", run, run);
}
run++;
}
eprintf ("\\nextlevel\n\n");
// Draw all events (according to ranks)
{
int myrank;
myrank = 0;
while (myrank < maxrank)
{
int count;
int run;
count = 0;
run = 0;
while (run < sys->maxruns)
{
if (sys->runs[run].protocol != INTRUDER)
{
int ev;
ev = 0;
while (ev < sys->runs[run].step)
{
if (myrank == ranks[node_number (run, ev)])
{
// We have found an event on this rank
// We only need to consider reads and claims, but for fun we just consider everything.
void outgoing_arrow (const int run2, const int ev2)
{
Roledef rd, rd2;
int delta;
rd = roledef_shift (sys->runs[run].start, ev);
rd2 = roledef_shift (sys->runs[run2].start, ev2);
eprintf ("\\mess{");
/*
// Print the term
// Maybe, if more than one outgoing, and different send/reads, we might want to change this a bit.
if (rd->type == SEND)
{
if (rd2->type == CLAIM)
{
roledefPrint(rd);
}
if (rd2->type == READ)
{
eprintf("$");
if (isTermEqual(rd->message, rd2->message))
{
termPrint(rd->message);
}
else
{
termPrint(rd->message);
eprintf(" \\longrightarrow ");
termPrint(rd2->message);
}
eprintf("$");
}
}
else
{
roledefPrint(rd);
}
*/
roledefPrint (rd);
eprintf (" $\\longrightarrow$ ");
roledefPrint (rd2);
eprintf ("}{r%i}{r%i}", run, run2);
delta = ranks[node_number (run2, ev2)] - myrank;
if (delta != 0)
{
eprintf ("[%i]", delta);
}
eprintf ("\n");
count++;
}
iterate_outgoing_arrows (outgoing_arrow, run, ev);
}
ev++;
}
}
run++;
}
eprintf ("\\nextlevel\n");
myrank++;
}
}
// clean memory
memFree (ranks, nodes * sizeof (int)); // ranks
// close graph
eprintf ("\\nextlevel\n\\end{msc}\n\n");
}
//! Display the current semistate using dot output format. //! Display the current semistate using dot output format.
/**
* This is not as nice as we would like it. Furthermore, the function is too big, and needs to be split into functional parts that
* will allow the generation of LaTeX code as well.
*/
void void
dotSemiState () dotSemiState ()
{ {
@ -924,75 +1254,7 @@ dotSemiState ()
ev = 0; ev = 0;
while (ev < sys->runs[run].length) while (ev < sys->runs[run].length)
{ {
/** void incoming_arrow (int run2, int ev2)
* Determine wheter to draw an incoming arrow to this event.
* We check all other runs, to see if they are ordered.
*/
int run2;
run2 = 0;
while (run2 < sys->maxruns)
{
if (run2 != run && sys->runs[run2].protocol != INTRUDER)
{
// Is this run before the event?
int ev2;
int found;
found = 0;
ev2 = sys->runs[run2].length;
while (found == 0 && ev2 > 0)
{
ev2--;
if (graph[graph_nodes (nodes, run2, ev2, run, ev)]
!= 0)
{
found = 1;
}
}
if (found == 1)
{
// It is before the event, and thus we would like to draw it.
// However, if there is another path along which we can get here, forget it
/**
* Note that this algorithm is similar to Floyd's algorithm for all shortest paths.
* The goal here is to select only the path with distance 1 (as viewed from the regular runs),
* so we can simplify stuff a bit.
* Nevertheless, using Floyd first would probably be faster.
*/
int other_route;
int run3;
int ev3;
other_route = 0;
run3 = 0;
ev3 = 0;
while (other_route == 0 && run3 < sys->maxruns)
{
if (sys->runs[run3].protocol != INTRUDER)
{
ev3 = 0;
while (other_route == 0
&& ev3 < sys->runs[run3].length)
{
if (graph
[graph_nodes
(nodes, run2, ev2, run3, ev3)] != 0
&&
graph[graph_nodes
(nodes, run3, ev3, run,
ev)] != 0)
{
// other route found
other_route = 1;
}
ev3++;
}
}
run3++;
}
if (other_route == 0)
{ {
Roledef rd, rd2; Roledef rd, rd2;
/* /*
@ -1007,8 +1269,7 @@ dotSemiState ()
eprintf (" "); eprintf (" ");
// decide color // decide color
rd = roledef_shift (sys->runs[run].start, ev); rd = roledef_shift (sys->runs[run].start, ev);
rd2 = rd2 = roledef_shift (sys->runs[run2].start, ev2);
roledef_shift (sys->runs[run2].start, ev2);
if (rd->type == CLAIM) if (rd->type == CLAIM)
{ {
// Towards a claim, so only indirect dependency // Towards a claim, so only indirect dependency
@ -1021,13 +1282,11 @@ dotSemiState ()
if (rd->type == READ && rd2->type == SEND) if (rd->type == READ && rd2->type == SEND)
{ {
// We want to distinguish where it is from a 'broken' send // We want to distinguish where it is from a 'broken' send
if (isTermEqual if (isTermEqual (rd->message, rd2->message))
(rd->message, rd2->message))
{ {
if (isTermEqual if (isTermEqual
(rd->from, rd2->from) (rd->from, rd2->from)
&& isTermEqual (rd->to, && isTermEqual (rd->to, rd2->to))
rd2->to))
{ {
// Wow, a perfect match. Leave the arrow as-is :) // Wow, a perfect match. Leave the arrow as-is :)
eprintf ("[color=forestgreen]"); eprintf ("[color=forestgreen]");
@ -1042,31 +1301,16 @@ dotSemiState ()
else else
{ {
// Not even the same message, intruder construction // Not even the same message, intruder construction
eprintf eprintf ("[label=\"construct\",color=red]");
("[label=\"construct\",color=red]");
} }
} }
} }
// close up // close up
eprintf (";\n"); eprintf (";\n");
} }
#ifdef DEBUG
else
{
// for debugging: show other route
run3--;
ev3--;
eprintf iterate_incoming_arrows (incoming_arrow, run, ev);
("\t// HIDDEN r%ii%i -> r%ii%i because route through r%ii%i\n",
run2, ev2, run, ev, run3, ev3);
}
#endif
}
}
run2++;
}
ev++; ev++;
} }
} }
@ -1247,7 +1491,8 @@ termBindConsequences (Term t)
tl = openVariables; tl = openVariables;
while (tl != NULL) while (tl != NULL)
{ {
if ((rd->type == READ || rd->type == SEND) && termSubTerm (rd->message, tl->term)) if ((rd->type == READ || rd->type == SEND)
&& termSubTerm (rd->message, tl->term))
{ {
// This run event contains the open variable // This run event contains the open variable
affectedCount++; affectedCount++;
@ -1404,13 +1649,17 @@ select_goal ()
// Determine buf_constrain levels // Determine buf_constrain levels
// Bit 0: 1 constrain level // Bit 0: 1 constrain level
if (mode & 1) adapt (1, term_constrain_level (b->term)); if (mode & 1)
adapt (1, term_constrain_level (b->term));
// Bit 1: 2 key level (inverted) // Bit 1: 2 key level (inverted)
if (mode & 2) adapt (1, 0.5 * (1 - b->level)); if (mode & 2)
adapt (1, 0.5 * (1 - b->level));
// Bit 2: 4 consequence level // Bit 2: 4 consequence level
if (mode & 4) adapt (1, termBindConsequences (b->term)); if (mode & 4)
adapt (1, termBindConsequences (b->term));
// Bit 4: 16 single variables first // Bit 4: 16 single variables first
if (mode & 16) adapt (4, 1-isTermVariable (b->term)); if (mode & 16)
adapt (4, 1 - isTermVariable (b->term));
// Weigh result // Weigh result
if (buf_weight == 0 || buf_constrain <= min_constrain) if (buf_weight == 0 || buf_constrain <= min_constrain)
@ -2055,7 +2304,8 @@ prune_bounds ()
if (sys->output == PROOF) if (sys->output == PROOF)
{ {
indentPrint (); indentPrint ();
eprintf ("Pruned: ran out of allowed time (-T %i switch)\n", get_time_limit () ); eprintf ("Pruned: ran out of allowed time (-T %i switch)\n",
get_time_limit ());
} }
// Pruned because of time bound! // Pruned because of time bound!
current_claim->timebound = 1; current_claim->timebound = 1;
@ -2245,7 +2495,16 @@ property_check ()
*/ */
count_false (); count_false ();
if (sys->output == ATTACK) if (sys->output == ATTACK)
{
if (sys->latex == 1)
{
latexSemiState ();
}
else
{
dotSemiState (); dotSemiState ();
}
}
// Store attack length if shorter // Store attack length if shorter
attack_this = get_trace_length (); attack_this = get_trace_length ();
if (attack_this < attack_length) if (attack_this < attack_length)