- Made a start with the arachne latex output. It's a mess currently.
This commit is contained in:
parent
56b083205a
commit
197117f2fe
673
src/arachne.c
673
src/arachne.c
@ -671,18 +671,348 @@ bind_new_run (const Binding b, const Protocol p, const Role r,
|
||||
|
||||
run = semiRunCreate (p, r);
|
||||
proof_suppose_run (run, 0, index + 1);
|
||||
{
|
||||
newgoals = add_read_goals (run, 0, index + 1);
|
||||
indentDepth++;
|
||||
flag = bind_existing_to_goal (b, run, index);
|
||||
indentDepth--;
|
||||
goal_remove_last (newgoals);
|
||||
}
|
||||
{
|
||||
newgoals = add_read_goals (run, 0, index + 1);
|
||||
indentDepth++;
|
||||
flag = bind_existing_to_goal (b, run, index);
|
||||
indentDepth--;
|
||||
goal_remove_last (newgoals);
|
||||
}
|
||||
semiRunDestroy ();
|
||||
return flag;
|
||||
}
|
||||
|
||||
|
||||
//! Iterate over all events that have an incoming arrow to the current one (forgetting the intruder for a moment)
|
||||
void
|
||||
iterate_incoming_arrows (void (*func) (), const int run, const int ev)
|
||||
{
|
||||
/**
|
||||
* Determine wheter to draw an incoming arrow to this event.
|
||||
* We check all other runs, to see if they are ordered.
|
||||
*/
|
||||
int run2;
|
||||
|
||||
run2 = 0;
|
||||
while (run2 < sys->maxruns)
|
||||
{
|
||||
if (run2 != run && sys->runs[run2].protocol != INTRUDER)
|
||||
{
|
||||
// Is this run before the event?
|
||||
int ev2;
|
||||
int found;
|
||||
|
||||
found = 0;
|
||||
ev2 = sys->runs[run2].length;
|
||||
while (found == 0 && ev2 > 0)
|
||||
{
|
||||
ev2--;
|
||||
if (graph[graph_nodes (nodes, run2, ev2, run, ev)] != 0)
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (found == 1)
|
||||
{
|
||||
// It is before the event, and thus we would like to draw it.
|
||||
// However, if there is another path along which we can get here, forget it
|
||||
/**
|
||||
* Note that this algorithm is similar to Floyd's algorithm for all shortest paths.
|
||||
* The goal here is to select only the path with distance 1 (as viewed from the regular runs),
|
||||
* so we can simplify stuff a bit.
|
||||
* Nevertheless, using Floyd first would probably be faster.
|
||||
*/
|
||||
int other_route;
|
||||
int run3;
|
||||
int ev3;
|
||||
|
||||
other_route = 0;
|
||||
run3 = 0;
|
||||
ev3 = 0;
|
||||
while (other_route == 0 && run3 < sys->maxruns)
|
||||
{
|
||||
if (sys->runs[run3].protocol != INTRUDER)
|
||||
{
|
||||
ev3 = 0;
|
||||
while (other_route == 0 && ev3 < sys->runs[run3].length)
|
||||
{
|
||||
if (graph
|
||||
[graph_nodes
|
||||
(nodes, run2, ev2, run3, ev3)] != 0
|
||||
&&
|
||||
graph[graph_nodes
|
||||
(nodes, run3, ev3, run, ev)] != 0)
|
||||
{
|
||||
// other route found
|
||||
other_route = 1;
|
||||
}
|
||||
ev3++;
|
||||
}
|
||||
}
|
||||
run3++;
|
||||
}
|
||||
if (other_route == 0)
|
||||
{
|
||||
func (run2, ev2);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
run2++;
|
||||
}
|
||||
}
|
||||
|
||||
//! Iterate over all events that have an outgoing arrow from the current one (forgetting the intruder for a moment)
|
||||
void
|
||||
iterate_outgoing_arrows (void (*func) (), const int run, const int ev)
|
||||
{
|
||||
/**
|
||||
* Determine wheter to draw an incoming arrow to this event.
|
||||
* We check all other runs, to see if they are ordered.
|
||||
*/
|
||||
int run2;
|
||||
|
||||
run2 = 0;
|
||||
while (run2 < sys->maxruns)
|
||||
{
|
||||
if (run2 != run && sys->runs[run2].protocol != INTRUDER)
|
||||
{
|
||||
// Is this run after the event?
|
||||
int ev2;
|
||||
int found;
|
||||
|
||||
found = 0;
|
||||
ev2 = 0;
|
||||
while (found == 0 && ev2 < sys->runs[run2].length)
|
||||
{
|
||||
if (graph[graph_nodes (nodes, run, ev, run2, ev2)] != 0)
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
ev2++;
|
||||
}
|
||||
|
||||
if (found == 1)
|
||||
{
|
||||
// It is after the event, and thus we would like to draw it.
|
||||
// However, if there is another path along which we can get there, forget it
|
||||
/**
|
||||
* Note that this algorithm is similar to Floyd's algorithm for all shortest paths.
|
||||
* The goal here is to select only the path with distance 1 (as viewed from the regular runs),
|
||||
* so we can simplify stuff a bit.
|
||||
* Nevertheless, using Floyd first would probably be faster.
|
||||
*/
|
||||
int other_route;
|
||||
int run3;
|
||||
int ev3;
|
||||
|
||||
other_route = 0;
|
||||
run3 = 0;
|
||||
ev3 = 0;
|
||||
while (other_route == 0 && run3 < sys->maxruns)
|
||||
{
|
||||
if (sys->runs[run3].protocol != INTRUDER)
|
||||
{
|
||||
ev3 = 0;
|
||||
while (other_route == 0 && ev3 < sys->runs[run3].length)
|
||||
{
|
||||
if (graph
|
||||
[graph_nodes
|
||||
(nodes, run, ev, run3, ev3)] != 0
|
||||
&&
|
||||
graph[graph_nodes
|
||||
(nodes, run3, ev3, run2, ev2)] != 0)
|
||||
{
|
||||
// other route found
|
||||
other_route = 1;
|
||||
}
|
||||
ev3++;
|
||||
}
|
||||
}
|
||||
run3++;
|
||||
}
|
||||
if (other_route == 0 || 1 == 1)
|
||||
{
|
||||
func (run2, ev2);
|
||||
}
|
||||
}
|
||||
}
|
||||
run2++;
|
||||
}
|
||||
}
|
||||
|
||||
//! Display the current semistate using LaTeX output format.
|
||||
/**
|
||||
* This is not as nice as we would like it. Furthermore, the function is too big, and needs to be split into functional parts that
|
||||
* will allow the generation of dot code as well.
|
||||
*/
|
||||
void
|
||||
latexSemiState ()
|
||||
{
|
||||
static int attack_number = 0;
|
||||
int run;
|
||||
Protocol p;
|
||||
int *ranks;
|
||||
int maxrank;
|
||||
|
||||
void node (const int run, const int index)
|
||||
{
|
||||
if (sys->runs[run].protocol == INTRUDER)
|
||||
{
|
||||
if (sys->runs[run].role == I_M)
|
||||
{
|
||||
eprintf ("m0");
|
||||
}
|
||||
else
|
||||
{
|
||||
eprintf ("i%i", run);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
eprintf ("r%ii%i", run, index);
|
||||
}
|
||||
}
|
||||
|
||||
// Open graph
|
||||
attack_number++;
|
||||
eprintf ("\\begin{msc}{Attack on ");
|
||||
p = (Protocol) current_claim->protocol;
|
||||
termPrint (p->nameterm);
|
||||
eprintf (", role ");
|
||||
termPrint (current_claim->rolename);
|
||||
eprintf (", claim type ");
|
||||
termPrint (current_claim->type);
|
||||
eprintf ("}\n%% Attack number %i\n", attack_number);
|
||||
eprintf ("\n");
|
||||
|
||||
// Needed for the bindings later on: create graph
|
||||
goal_graph_create (); // create graph
|
||||
if (warshall (graph, nodes) == 0) // determine closure
|
||||
{
|
||||
eprintf
|
||||
("%% This graph was not completely closed transitively because it contains a cycle!\n");
|
||||
}
|
||||
|
||||
ranks = memAlloc (nodes * sizeof (int));
|
||||
maxrank = graph_ranks (graph, ranks, nodes); // determine ranks
|
||||
|
||||
// Draw headings (boxes)
|
||||
run = 0;
|
||||
while (run < sys->maxruns)
|
||||
{
|
||||
if (sys->runs[run].protocol != INTRUDER)
|
||||
{
|
||||
eprintf ("\\declinst{r%i}{}{run %i}\n", run, run);
|
||||
}
|
||||
run++;
|
||||
}
|
||||
eprintf ("\\nextlevel\n\n");
|
||||
|
||||
// Draw all events (according to ranks)
|
||||
{
|
||||
int myrank;
|
||||
|
||||
myrank = 0;
|
||||
while (myrank < maxrank)
|
||||
{
|
||||
int count;
|
||||
int run;
|
||||
|
||||
count = 0;
|
||||
run = 0;
|
||||
while (run < sys->maxruns)
|
||||
{
|
||||
if (sys->runs[run].protocol != INTRUDER)
|
||||
{
|
||||
int ev;
|
||||
|
||||
ev = 0;
|
||||
while (ev < sys->runs[run].step)
|
||||
{
|
||||
if (myrank == ranks[node_number (run, ev)])
|
||||
{
|
||||
// We have found an event on this rank
|
||||
// We only need to consider reads and claims, but for fun we just consider everything.
|
||||
void outgoing_arrow (const int run2, const int ev2)
|
||||
{
|
||||
Roledef rd, rd2;
|
||||
int delta;
|
||||
|
||||
rd = roledef_shift (sys->runs[run].start, ev);
|
||||
rd2 = roledef_shift (sys->runs[run2].start, ev2);
|
||||
|
||||
eprintf ("\\mess{");
|
||||
/*
|
||||
// Print the term
|
||||
// Maybe, if more than one outgoing, and different send/reads, we might want to change this a bit.
|
||||
if (rd->type == SEND)
|
||||
{
|
||||
if (rd2->type == CLAIM)
|
||||
{
|
||||
roledefPrint(rd);
|
||||
}
|
||||
if (rd2->type == READ)
|
||||
{
|
||||
eprintf("$");
|
||||
if (isTermEqual(rd->message, rd2->message))
|
||||
{
|
||||
termPrint(rd->message);
|
||||
}
|
||||
else
|
||||
{
|
||||
termPrint(rd->message);
|
||||
eprintf(" \\longrightarrow ");
|
||||
termPrint(rd2->message);
|
||||
}
|
||||
eprintf("$");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
roledefPrint(rd);
|
||||
}
|
||||
*/
|
||||
roledefPrint (rd);
|
||||
eprintf (" $\\longrightarrow$ ");
|
||||
roledefPrint (rd2);
|
||||
|
||||
eprintf ("}{r%i}{r%i}", run, run2);
|
||||
delta = ranks[node_number (run2, ev2)] - myrank;
|
||||
if (delta != 0)
|
||||
{
|
||||
eprintf ("[%i]", delta);
|
||||
}
|
||||
eprintf ("\n");
|
||||
count++;
|
||||
}
|
||||
|
||||
iterate_outgoing_arrows (outgoing_arrow, run, ev);
|
||||
}
|
||||
ev++;
|
||||
}
|
||||
}
|
||||
run++;
|
||||
}
|
||||
eprintf ("\\nextlevel\n");
|
||||
myrank++;
|
||||
}
|
||||
}
|
||||
|
||||
// clean memory
|
||||
memFree (ranks, nodes * sizeof (int)); // ranks
|
||||
|
||||
// close graph
|
||||
eprintf ("\\nextlevel\n\\end{msc}\n\n");
|
||||
}
|
||||
|
||||
//! Display the current semistate using dot output format.
|
||||
/**
|
||||
* This is not as nice as we would like it. Furthermore, the function is too big, and needs to be split into functional parts that
|
||||
* will allow the generation of LaTeX code as well.
|
||||
*/
|
||||
void
|
||||
dotSemiState ()
|
||||
{
|
||||
@ -891,9 +1221,9 @@ dotSemiState ()
|
||||
// Draw the first box
|
||||
// This used to be drawn only if done && send_before_read, now we always draw it.
|
||||
eprintf ("\t\ts%i [label=\"Run %i: ", run, run);
|
||||
termPrint (sys->runs[run].protocol->nameterm);
|
||||
termPrint (sys->runs[run].protocol->nameterm);
|
||||
eprintf (", ");
|
||||
termPrint (sys->runs[run].role->nameterm);
|
||||
termPrint (sys->runs[run].role->nameterm);
|
||||
eprintf ("\\n");
|
||||
agentsOfRunPrint (sys, run);
|
||||
eprintf ("\", shape=diamond];\n");
|
||||
@ -924,149 +1254,63 @@ dotSemiState ()
|
||||
ev = 0;
|
||||
while (ev < sys->runs[run].length)
|
||||
{
|
||||
/**
|
||||
* Determine wheter to draw an incoming arrow to this event.
|
||||
* We check all other runs, to see if they are ordered.
|
||||
*/
|
||||
int run2;
|
||||
void incoming_arrow (int run2, int ev2)
|
||||
{
|
||||
Roledef rd, rd2;
|
||||
/*
|
||||
* We have decided to draw this binding,
|
||||
* from run2,ev2 to run,ev
|
||||
* However, me might need to decide some colouring for this node.
|
||||
*/
|
||||
eprintf ("\t");
|
||||
node (run2, ev2);
|
||||
eprintf (" -> ");
|
||||
node (run, ev);
|
||||
eprintf (" ");
|
||||
// decide color
|
||||
rd = roledef_shift (sys->runs[run].start, ev);
|
||||
rd2 = roledef_shift (sys->runs[run2].start, ev2);
|
||||
if (rd->type == CLAIM)
|
||||
{
|
||||
// Towards a claim, so only indirect dependency
|
||||
eprintf ("[color=cornflowerblue]");
|
||||
}
|
||||
else
|
||||
{
|
||||
// Not towards claim should imply towards read,
|
||||
// but we check it to comply with future stuff.
|
||||
if (rd->type == READ && rd2->type == SEND)
|
||||
{
|
||||
// We want to distinguish where it is from a 'broken' send
|
||||
if (isTermEqual (rd->message, rd2->message))
|
||||
{
|
||||
if (isTermEqual
|
||||
(rd->from, rd2->from)
|
||||
&& isTermEqual (rd->to, rd2->to))
|
||||
{
|
||||
// Wow, a perfect match. Leave the arrow as-is :)
|
||||
eprintf ("[color=forestgreen]");
|
||||
}
|
||||
else
|
||||
{
|
||||
// Same message, different people
|
||||
eprintf
|
||||
("[label=\"redirect\",color=darkorange2]");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Not even the same message, intruder construction
|
||||
eprintf ("[label=\"construct\",color=red]");
|
||||
}
|
||||
}
|
||||
}
|
||||
// close up
|
||||
eprintf (";\n");
|
||||
}
|
||||
|
||||
run2 = 0;
|
||||
while (run2 < sys->maxruns)
|
||||
{
|
||||
if (run2 != run && sys->runs[run2].protocol != INTRUDER)
|
||||
{
|
||||
// Is this run before the event?
|
||||
int ev2;
|
||||
int found;
|
||||
iterate_incoming_arrows (incoming_arrow, run, ev);
|
||||
|
||||
found = 0;
|
||||
ev2 = sys->runs[run2].length;
|
||||
while (found == 0 && ev2 > 0)
|
||||
{
|
||||
ev2--;
|
||||
if (graph[graph_nodes (nodes, run2, ev2, run, ev)]
|
||||
!= 0)
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (found == 1)
|
||||
{
|
||||
// It is before the event, and thus we would like to draw it.
|
||||
// However, if there is another path along which we can get here, forget it
|
||||
/**
|
||||
* Note that this algorithm is similar to Floyd's algorithm for all shortest paths.
|
||||
* The goal here is to select only the path with distance 1 (as viewed from the regular runs),
|
||||
* so we can simplify stuff a bit.
|
||||
* Nevertheless, using Floyd first would probably be faster.
|
||||
*/
|
||||
int other_route;
|
||||
int run3;
|
||||
int ev3;
|
||||
|
||||
other_route = 0;
|
||||
run3 = 0;
|
||||
ev3 = 0;
|
||||
while (other_route == 0 && run3 < sys->maxruns)
|
||||
{
|
||||
if (sys->runs[run3].protocol != INTRUDER)
|
||||
{
|
||||
ev3 = 0;
|
||||
while (other_route == 0
|
||||
&& ev3 < sys->runs[run3].length)
|
||||
{
|
||||
if (graph
|
||||
[graph_nodes
|
||||
(nodes, run2, ev2, run3, ev3)] != 0
|
||||
&&
|
||||
graph[graph_nodes
|
||||
(nodes, run3, ev3, run,
|
||||
ev)] != 0)
|
||||
{
|
||||
// other route found
|
||||
other_route = 1;
|
||||
}
|
||||
ev3++;
|
||||
}
|
||||
}
|
||||
run3++;
|
||||
}
|
||||
if (other_route == 0)
|
||||
{
|
||||
Roledef rd, rd2;
|
||||
/*
|
||||
* We have decided to draw this binding,
|
||||
* from run2,ev2 to run,ev
|
||||
* However, me might need to decide some colouring for this node.
|
||||
*/
|
||||
eprintf ("\t");
|
||||
node (run2, ev2);
|
||||
eprintf (" -> ");
|
||||
node (run, ev);
|
||||
eprintf (" ");
|
||||
// decide color
|
||||
rd = roledef_shift (sys->runs[run].start, ev);
|
||||
rd2 =
|
||||
roledef_shift (sys->runs[run2].start, ev2);
|
||||
if (rd->type == CLAIM)
|
||||
{
|
||||
// Towards a claim, so only indirect dependency
|
||||
eprintf ("[color=cornflowerblue]");
|
||||
}
|
||||
else
|
||||
{
|
||||
// Not towards claim should imply towards read,
|
||||
// but we check it to comply with future stuff.
|
||||
if (rd->type == READ && rd2->type == SEND)
|
||||
{
|
||||
// We want to distinguish where it is from a 'broken' send
|
||||
if (isTermEqual
|
||||
(rd->message, rd2->message))
|
||||
{
|
||||
if (isTermEqual
|
||||
(rd->from, rd2->from)
|
||||
&& isTermEqual (rd->to,
|
||||
rd2->to))
|
||||
{
|
||||
// Wow, a perfect match. Leave the arrow as-is :)
|
||||
eprintf ("[color=forestgreen]");
|
||||
}
|
||||
else
|
||||
{
|
||||
// Same message, different people
|
||||
eprintf
|
||||
("[label=\"redirect\",color=darkorange2]");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Not even the same message, intruder construction
|
||||
eprintf
|
||||
("[label=\"construct\",color=red]");
|
||||
}
|
||||
}
|
||||
}
|
||||
// close up
|
||||
eprintf (";\n");
|
||||
}
|
||||
#ifdef DEBUG
|
||||
else
|
||||
{
|
||||
// for debugging: show other route
|
||||
run3--;
|
||||
ev3--;
|
||||
|
||||
eprintf
|
||||
("\t// HIDDEN r%ii%i -> r%ii%i because route through r%ii%i\n",
|
||||
run2, ev2, run, ev, run3, ev3);
|
||||
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
run2++;
|
||||
}
|
||||
ev++;
|
||||
}
|
||||
}
|
||||
@ -1216,7 +1460,7 @@ termBindConsequences (Term t)
|
||||
{
|
||||
Termlist openVariables;
|
||||
|
||||
openVariables = termlistAddVariables(NULL, t);
|
||||
openVariables = termlistAddVariables (NULL, t);
|
||||
if (openVariables == NULL)
|
||||
{
|
||||
// No variables, no consequences
|
||||
@ -1247,7 +1491,8 @@ termBindConsequences (Term t)
|
||||
tl = openVariables;
|
||||
while (tl != NULL)
|
||||
{
|
||||
if ((rd->type == READ || rd->type == SEND) && termSubTerm (rd->message, tl->term))
|
||||
if ((rd->type == READ || rd->type == SEND)
|
||||
&& termSubTerm (rd->message, tl->term))
|
||||
{
|
||||
// This run event contains the open variable
|
||||
affectedCount++;
|
||||
@ -1289,7 +1534,7 @@ termBindConsequences (Term t)
|
||||
* Nice iteration, I'd suppose
|
||||
*/
|
||||
Binding
|
||||
select_tuple_goal()
|
||||
select_tuple_goal ()
|
||||
{
|
||||
List bl;
|
||||
Binding tuplegoal;
|
||||
@ -1390,10 +1635,10 @@ select_goal ()
|
||||
int buf_weight;
|
||||
|
||||
void adapt (int w, float fl)
|
||||
{
|
||||
buf_constrain = buf_constrain + w * fl;
|
||||
buf_weight = buf_weight + w;
|
||||
}
|
||||
{
|
||||
buf_constrain = buf_constrain + w * fl;
|
||||
buf_weight = buf_weight + w;
|
||||
}
|
||||
|
||||
// buf_constrain is the addition of the factors before division by weight
|
||||
buf_constrain = 0;
|
||||
@ -1404,13 +1649,17 @@ select_goal ()
|
||||
|
||||
// Determine buf_constrain levels
|
||||
// Bit 0: 1 constrain level
|
||||
if (mode & 1) adapt (1, term_constrain_level (b->term));
|
||||
if (mode & 1)
|
||||
adapt (1, term_constrain_level (b->term));
|
||||
// Bit 1: 2 key level (inverted)
|
||||
if (mode & 2) adapt (1, 0.5 * (1 - b->level));
|
||||
if (mode & 2)
|
||||
adapt (1, 0.5 * (1 - b->level));
|
||||
// Bit 2: 4 consequence level
|
||||
if (mode & 4) adapt (1, termBindConsequences (b->term));
|
||||
if (mode & 4)
|
||||
adapt (1, termBindConsequences (b->term));
|
||||
// Bit 4: 16 single variables first
|
||||
if (mode & 16) adapt (4, 1-isTermVariable (b->term));
|
||||
if (mode & 16)
|
||||
adapt (4, 1 - isTermVariable (b->term));
|
||||
|
||||
// Weigh result
|
||||
if (buf_weight == 0 || buf_constrain <= min_constrain)
|
||||
@ -1447,7 +1696,7 @@ select_goal ()
|
||||
int
|
||||
bind_goal_new_m0 (const Binding b)
|
||||
{
|
||||
Termlist m0tl,tl;
|
||||
Termlist m0tl, tl;
|
||||
int flag;
|
||||
int found;
|
||||
|
||||
@ -1471,28 +1720,28 @@ bind_goal_new_m0 (const Binding b)
|
||||
run = semiRunCreate (INTRUDER, I_M);
|
||||
proof_suppose_run (run, 0, 1);
|
||||
sys->runs[run].length = 1;
|
||||
{
|
||||
indentDepth++;
|
||||
if (goal_bind (b, run, 0))
|
||||
{
|
||||
found++;
|
||||
proof_suppose_binding (b);
|
||||
if (sys->output == PROOF)
|
||||
{
|
||||
indentPrint ();
|
||||
eprintf ("* I.e. retrieving ");
|
||||
termPrint (b->term);
|
||||
eprintf (" from the initial knowledge.\n");
|
||||
}
|
||||
flag = flag && iterate ();
|
||||
}
|
||||
else
|
||||
{
|
||||
proof_cannot_bind (b, run, 0);
|
||||
}
|
||||
goal_unbind (b);
|
||||
indentDepth--;
|
||||
}
|
||||
{
|
||||
indentDepth++;
|
||||
if (goal_bind (b, run, 0))
|
||||
{
|
||||
found++;
|
||||
proof_suppose_binding (b);
|
||||
if (sys->output == PROOF)
|
||||
{
|
||||
indentPrint ();
|
||||
eprintf ("* I.e. retrieving ");
|
||||
termPrint (b->term);
|
||||
eprintf (" from the initial knowledge.\n");
|
||||
}
|
||||
flag = flag && iterate ();
|
||||
}
|
||||
else
|
||||
{
|
||||
proof_cannot_bind (b, run, 0);
|
||||
}
|
||||
goal_unbind (b);
|
||||
indentDepth--;
|
||||
}
|
||||
semiRunDestroy ();
|
||||
|
||||
|
||||
@ -1511,7 +1760,7 @@ bind_goal_new_m0 (const Binding b)
|
||||
eprintf (" cannot be constructed from the initial knowledge.\n");
|
||||
}
|
||||
termlistDelete (m0tl);
|
||||
|
||||
|
||||
|
||||
return flag;
|
||||
}
|
||||
@ -1699,9 +1948,9 @@ bind_goal_regular_run (const Binding b)
|
||||
// Bind to existing run
|
||||
sflag = bind_existing_run (b, p, r, index);
|
||||
// bind to new run
|
||||
{
|
||||
sflag = sflag && bind_new_run (b, p, r, index);
|
||||
}
|
||||
{
|
||||
sflag = sflag && bind_new_run (b, p, r, index);
|
||||
}
|
||||
indentDepth--;
|
||||
return sflag;
|
||||
}
|
||||
@ -1824,9 +2073,9 @@ bind_goal (const Binding b)
|
||||
else
|
||||
{
|
||||
// Normal case
|
||||
{
|
||||
flag = bind_goal_regular_run (b);
|
||||
}
|
||||
{
|
||||
flag = bind_goal_regular_run (b);
|
||||
}
|
||||
flag = flag && bind_goal_old_intruder_run (b);
|
||||
flag = flag && bind_goal_new_intruder_run (b);
|
||||
}
|
||||
@ -1960,17 +2209,17 @@ prune_theorems ()
|
||||
}
|
||||
|
||||
// Check for c-minimality
|
||||
{
|
||||
if (!bindings_c_minimal ())
|
||||
{
|
||||
if (sys->output == PROOF)
|
||||
{
|
||||
indentPrint ();
|
||||
eprintf ("Pruned because this is not <=c-minimal.\n");
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
{
|
||||
if (!bindings_c_minimal ())
|
||||
{
|
||||
if (sys->output == PROOF)
|
||||
{
|
||||
indentPrint ();
|
||||
eprintf ("Pruned because this is not <=c-minimal.\n");
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Check whether the bindings are valid
|
||||
@ -2055,7 +2304,8 @@ prune_bounds ()
|
||||
if (sys->output == PROOF)
|
||||
{
|
||||
indentPrint ();
|
||||
eprintf ("Pruned: ran out of allowed time (-T %i switch)\n", get_time_limit () );
|
||||
eprintf ("Pruned: ran out of allowed time (-T %i switch)\n",
|
||||
get_time_limit ());
|
||||
}
|
||||
// Pruned because of time bound!
|
||||
current_claim->timebound = 1;
|
||||
@ -2245,7 +2495,16 @@ property_check ()
|
||||
*/
|
||||
count_false ();
|
||||
if (sys->output == ATTACK)
|
||||
dotSemiState ();
|
||||
{
|
||||
if (sys->latex == 1)
|
||||
{
|
||||
latexSemiState ();
|
||||
}
|
||||
else
|
||||
{
|
||||
dotSemiState ();
|
||||
}
|
||||
}
|
||||
// Store attack length if shorter
|
||||
attack_this = get_trace_length ();
|
||||
if (attack_this < attack_length)
|
||||
@ -2280,12 +2539,12 @@ iterate ()
|
||||
Binding b;
|
||||
|
||||
// Are there any tuple goals?
|
||||
b = select_tuple_goal();
|
||||
b = select_tuple_goal ();
|
||||
if (b != NULL)
|
||||
{
|
||||
// Expand tuple goal
|
||||
int count;
|
||||
|
||||
|
||||
// mark as blocked for iteration
|
||||
binding_block (b);
|
||||
// simply adding will detect the tuple and add the new subgoals
|
||||
@ -2304,7 +2563,7 @@ iterate ()
|
||||
flag = iterate ();
|
||||
|
||||
// undo
|
||||
goal_remove_last (count);
|
||||
goal_remove_last (count);
|
||||
binding_unblock (b);
|
||||
}
|
||||
else
|
||||
|
Loading…
Reference in New Issue
Block a user