scyther/src/warshall.c

99 lines
1.5 KiB
C
Raw Normal View History

/**
* Temp file. I just forgot Warshall...
*
*/
void
graph_fill (int *graph, int nodes, int value)
{
int node;
node = 0;
while (node < (nodes * nodes))
{
graph[node] = value;
node++;
}
}
//! Show a graph
void graph_display (int *graph, int nodes)
{
int i;
int index (const int i, const int j)
{
return (i * nodes + j);
}
i = 0;
while (i < nodes)
{
int j;
j = 0;
while (j<nodes)
{
eprintf ("%i ", graph[index(i,j)]);
j++;
}
eprintf ("\n");
i++;
}
}
//! Apply warshall's algorithm to determine the closure of a graph
/**
* If j<i and k<j, then k<i.
* Could be done more efficiently but that is irrelevant here.
*
*@param graph A pointer to the integer array of nodes*nodes elements.
*@param nodes The number of nodes in the graph.
*@Returns 0 if there is a cycle; and the algorithm aborts, 1 if there is no cycle and the result is okay.
*/
int
warshall (int *graph, int nodes)
{
int i;
int index (const int i, const int j)
{
return (i * nodes + j);
}
i = 0;
while (i < nodes)
{
int j;
j = 0;
while (j < nodes)
{
if (graph[index (j, i)] == 1)
{
int k;
k = 0;
while (k < nodes)
{
if (graph[index (k, j)] == 1)
{
if (k == i)
{
// Oh no! A cycle.
graph [index (k,i)] = 2;
graph_display (graph, nodes);
return 0;
}
graph[index (k, i)] = 1;
}
k++;
}
}
j++;
}
i++;
}
return 1;
}