gotch/example/mnist/cnn.go

134 lines
3.4 KiB
Go

package main
import (
"fmt"
"log"
"runtime"
"sync"
"time"
"git.andr3h3nriqu3s.com/andr3/gotch"
"git.andr3h3nriqu3s.com/andr3/gotch/nn"
"git.andr3h3nriqu3s.com/andr3/gotch/ts"
"git.andr3h3nriqu3s.com/andr3/gotch/vision"
)
const (
MnistDirCNN string = "../../data/mnist"
epochsCNN = 30
batchCNN = 256
// batchSize = 256
batchSize = 32
LrCNN = 3 * 1e-4
)
var mu sync.Mutex
type Net struct {
conv1 *nn.Conv2D
conv2 *nn.Conv2D
fc1 *nn.Linear
fc2 *nn.Linear
}
func newNet(vs *nn.Path) *Net {
conv1 := nn.NewConv2D(vs, 1, 32, 5, nn.DefaultConv2DConfig())
conv2 := nn.NewConv2D(vs, 32, 64, 5, nn.DefaultConv2DConfig())
fc1 := nn.NewLinear(vs, 1024, 1024, nn.DefaultLinearConfig())
fc2 := nn.NewLinear(vs, 1024, 10, nn.DefaultLinearConfig())
return &Net{
conv1,
conv2,
fc1,
fc2}
}
func (n *Net) ForwardT(xs *ts.Tensor, train bool) *ts.Tensor {
outView1 := xs.MustView([]int64{-1, 1, 28, 28}, false)
outC1 := outView1.Apply(n.conv1)
outMP1 := outC1.MaxPool2DDefault(2, true)
outC2 := outMP1.Apply(n.conv2)
outMP2 := outC2.MaxPool2DDefault(2, true)
outView2 := outMP2.MustView([]int64{-1, 1024}, true)
outFC1 := outView2.Apply(n.fc1)
outRelu := outFC1.MustRelu(false)
outDropout := ts.MustDropout(outRelu, 0.5, train)
return outDropout.Apply(n.fc2)
}
func runCNN1() {
var ds *vision.Dataset
ds = vision.LoadMNISTDir(MnistDirNN)
trainImages := ds.TrainImages.MustTo(device, false) //[60000, 784]
trainLabels := ds.TrainLabels.MustTo(device, false) // [60000, 784]
testImages := ds.TestImages.MustTo(device, false) // [10000, 784]
testLabels := ds.TestLabels.MustTo(device, false) // [10000, 784]
fmt.Printf("testImages: %v\n", testImages.MustSize())
fmt.Printf("testLabels: %v\n", testLabels.MustSize())
vs := nn.NewVarStore(device)
net := newNet(vs.Root())
opt, err := nn.DefaultAdamConfig().Build(vs, LrCNN)
// opt, err := nn.DefaultSGDConfig().Build(vs, LrCNN)
if err != nil {
log.Fatal(err)
}
var bestAccuracy float64 = 0.0
startTime := time.Now()
for epoch := 0; epoch < epochsCNN; epoch++ {
totalSize := ds.TrainImages.MustSize()[0]
samples := int(totalSize)
// Shuffling
index := ts.MustRandperm(int64(totalSize), gotch.Int64, device)
imagesTs := trainImages.MustIndexSelect(0, index, false)
labelsTs := trainLabels.MustIndexSelect(0, index, false)
batches := samples / batchSize
batchIndex := 0
var epocLoss float64
for i := 0; i < batches; i++ {
start := batchIndex * batchSize
size := batchSize
if samples-start < batchSize {
break
}
batchIndex += 1
// Indexing
bImages := imagesTs.MustNarrow(0, int64(start), int64(size), false)
logits := net.ForwardT(bImages, true)
bLabels := labelsTs.MustNarrow(0, int64(start), int64(size), false)
loss := logits.CrossEntropyForLogits(bLabels)
loss = loss.MustSetRequiresGrad(true, true)
opt.BackwardStep(loss)
epocLoss = loss.Float64Values()[0]
runtime.GC()
}
ts.NoGrad(func() {
fmt.Printf("Start eval...")
testAccuracy := nn.BatchAccuracyForLogits(vs, net, testImages, testLabels, vs.Device(), 1000)
fmt.Printf("Epoch: %v\t Loss: %.2f \t Test accuracy: %.2f%%\n", epoch, epocLoss, testAccuracy*100.0)
if testAccuracy > bestAccuracy {
bestAccuracy = testAccuracy
}
})
}
fmt.Printf("Best test accuracy: %.2f%%\n", bestAccuracy*100.0)
fmt.Printf("Taken time:\t%.2f mins\n", time.Since(startTime).Minutes())
ts.CleanUp()
}