// Copyright 2019 Montgomery Edwards⁴⁴⁸ and Faye Amacker // // Special thanks to Kathryn Long for her Rust implementation // of float16 at github.com/starkat99/half-rs (MIT license) // Package half defines support for half-precision floating-point numbers. package half import ( "math" "strconv" ) // Float16 represents IEEE 754 half-precision floating-point numbers (binary16). type Float16 uint16 // Precision indicates whether the conversion to Float16 is // exact, subnormal without dropped bits, inexact, underflow, or overflow. type Precision int const ( // PrecisionExact is for non-subnormals that don't drop bits during conversion. // All of these can round-trip. Should always convert to float16. PrecisionExact Precision = iota // PrecisionUnknown is for subnormals that don't drop bits during conversion but // not all of these can round-trip so precision is unknown without more effort. // Only 2046 of these can round-trip and the rest cannot round-trip. PrecisionUnknown // PrecisionInexact is for dropped significand bits and cannot round-trip. // Some of these are subnormals. Cannot round-trip float32->float16->float32. PrecisionInexact // PrecisionUnderflow is for Underflows. Cannot round-trip float32->float16->float32. PrecisionUnderflow // PrecisionOverflow is for Overflows. Cannot round-trip float32->float16->float32. PrecisionOverflow ) // PrecisionFromfloat32 returns Precision without performing // the conversion. Conversions from both Infinity and NaN // values will always report PrecisionExact even if NaN payload // or NaN-Quiet-Bit is lost. This function is kept simple to // allow inlining and run < 0.5 ns/op, to serve as a fast filter. func PrecisionFromfloat32(f32 float32) Precision { u32 := math.Float32bits(f32) if u32 == 0 || u32 == 0x80000000 { // +- zero will always be exact conversion return PrecisionExact } const COEFMASK uint32 = 0x7fffff // 23 least significant bits const EXPSHIFT uint32 = 23 const EXPBIAS uint32 = 127 const EXPMASK uint32 = uint32(0xff) << EXPSHIFT const DROPMASK uint32 = COEFMASK >> 10 exp := int32(((u32 & EXPMASK) >> EXPSHIFT) - EXPBIAS) coef := u32 & COEFMASK if exp == 128 { // +- infinity or NaN // apps may want to do extra checks for NaN separately return PrecisionExact } // https://en.wikipedia.org/wiki/Half-precision_floating-point_format says, // "Decimals between 2^−24 (minimum positive subnormal) and 2^−14 (maximum subnormal): fixed interval 2^−24" if exp < -24 { return PrecisionUnderflow } if exp > 15 { return PrecisionOverflow } if (coef & DROPMASK) != uint32(0) { // these include subnormals and non-subnormals that dropped bits return PrecisionInexact } if exp < -14 { // Subnormals. Caller may want to test these further. // There are 2046 subnormals that can successfully round-trip f32->f16->f32 // and 20 of those 2046 have 32-bit input coef == 0. // RFC 7049 and 7049bis Draft 12 don't precisely define "preserves value" // so some protocols and libraries will choose to handle subnormals differently // when deciding to encode them to CBOR float32 vs float16. return PrecisionUnknown } return PrecisionExact } // Frombits returns the float16 number corresponding to the IEEE 754 binary16 // representation u16, with the sign bit of u16 and the result in the same bit // position. Frombits(Bits(x)) == x. func Frombits(u16 uint16) Float16 { return Float16(u16) } // Fromfloat32 returns a Float16 value converted from f32. Conversion uses // IEEE default rounding (nearest int, with ties to even). func Fromfloat32(f32 float32) Float16 { return Float16(f32bitsToF16bits(math.Float32bits(f32))) } // ErrInvalidNaNValue indicates a NaN was not received. const ErrInvalidNaNValue = float16Error("float16: invalid NaN value, expected IEEE 754 NaN") type float16Error string func (e float16Error) Error() string { return string(e) } // FromNaN32ps converts nan to IEEE binary16 NaN while preserving both // signaling and payload. Unlike Fromfloat32(), which can only return // qNaN because it sets quiet bit = 1, this can return both sNaN and qNaN. // If the result is infinity (sNaN with empty payload), then the // lowest bit of payload is set to make the result a NaN. // Returns ErrInvalidNaNValue and 0x7c01 (sNaN) if nan isn't IEEE 754 NaN. // This function was kept simple to be able to inline. func FromNaN32ps(nan float32) (Float16, error) { const SNAN = Float16(uint16(0x7c01)) // signaling NaN u32 := math.Float32bits(nan) sign := u32 & 0x80000000 exp := u32 & 0x7f800000 coef := u32 & 0x007fffff if (exp != 0x7f800000) || (coef == 0) { return SNAN, ErrInvalidNaNValue } u16 := uint16((sign >> 16) | uint32(0x7c00) | (coef >> 13)) if (u16 & 0x03ff) == 0 { // result became infinity, make it NaN by setting lowest bit in payload u16 |= 0x0001 } return Float16(u16), nil } // NaN returns a Float16 of IEEE 754 binary16 not-a-number (NaN). // Returned NaN value 0x7e01 has all exponent bits = 1 with the // first and last bits = 1 in the significand. This is consistent // with Go's 64-bit math.NaN(). Canonical CBOR in RFC 7049 uses 0x7e00. func NaN() Float16 { return Float16(0x7e01) } // Inf returns a Float16 with an infinity value with the specified sign. // A sign >= returns positive infinity. // A sign < 0 returns negative infinity. func Inf(sign int) Float16 { if sign >= 0 { return Float16(0x7c00) } return Float16(0x8000 | 0x7c00) } // Float32 returns a float32 converted from f (Float16). // This is a lossless conversion. func (f Float16) Float32() float32 { u32 := f16bitsToF32bits(uint16(f)) return math.Float32frombits(u32) } // Bits returns the IEEE 754 binary16 representation of f, with the sign bit // of f and the result in the same bit position. Bits(Frombits(x)) == x. func (f Float16) Bits() uint16 { return uint16(f) } // IsNaN reports whether f is an IEEE 754 binary16 “not-a-number” value. func (f Float16) IsNaN() bool { return (f&0x7c00 == 0x7c00) && (f&0x03ff != 0) } // IsQuietNaN reports whether f is a quiet (non-signaling) IEEE 754 binary16 // “not-a-number” value. func (f Float16) IsQuietNaN() bool { return (f&0x7c00 == 0x7c00) && (f&0x03ff != 0) && (f&0x0200 != 0) } // IsInf reports whether f is an infinity (inf). // A sign > 0 reports whether f is positive inf. // A sign < 0 reports whether f is negative inf. // A sign == 0 reports whether f is either inf. func (f Float16) IsInf(sign int) bool { return ((f == 0x7c00) && sign >= 0) || (f == 0xfc00 && sign <= 0) } // IsFinite returns true if f is neither infinite nor NaN. func (f Float16) IsFinite() bool { return (uint16(f) & uint16(0x7c00)) != uint16(0x7c00) } // IsNormal returns true if f is neither zero, infinite, subnormal, or NaN. func (f Float16) IsNormal() bool { exp := uint16(f) & uint16(0x7c00) return (exp != uint16(0x7c00)) && (exp != 0) } // Signbit reports whether f is negative or negative zero. func (f Float16) Signbit() bool { return (uint16(f) & uint16(0x8000)) != 0 } // String satisfies the fmt.Stringer interface. func (f Float16) String() string { return strconv.FormatFloat(float64(f.Float32()), 'f', -1, 32) } // f16bitsToF32bits returns uint32 (float32 bits) converted from specified uint16. func f16bitsToF32bits(in uint16) uint32 { // All 65536 conversions with this were confirmed to be correct // by Montgomery Edwards⁴⁴⁸ (github.com/x448). sign := uint32(in&0x8000) << 16 // sign for 32-bit exp := uint32(in&0x7c00) >> 10 // exponenent for 16-bit coef := uint32(in&0x03ff) << 13 // significand for 32-bit if exp == 0x1f { if coef == 0 { // infinity return sign | 0x7f800000 | coef } // NaN return sign | 0x7fc00000 | coef } if exp == 0 { if coef == 0 { // zero return sign } // normalize subnormal numbers exp++ for coef&0x7f800000 == 0 { coef <<= 1 exp-- } coef &= 0x007fffff } return sign | ((exp + (0x7f - 0xf)) << 23) | coef } // f32bitsToF16bits returns uint16 (Float16 bits) converted from the specified float32. // Conversion rounds to nearest integer with ties to even. func f32bitsToF16bits(u32 uint32) uint16 { // Translated from Rust to Go by Montgomery Edwards⁴⁴⁸ (github.com/x448). // All 4294967296 conversions with this were confirmed to be correct by x448. // Original Rust implementation is by Kathryn Long (github.com/starkat99) with MIT license. sign := u32 & 0x80000000 exp := u32 & 0x7f800000 coef := u32 & 0x007fffff if exp == 0x7f800000 { // NaN or Infinity nanBit := uint32(0) if coef != 0 { nanBit = uint32(0x0200) } return uint16((sign >> 16) | uint32(0x7c00) | nanBit | (coef >> 13)) } halfSign := sign >> 16 unbiasedExp := int32(exp>>23) - 127 halfExp := unbiasedExp + 15 if halfExp >= 0x1f { return uint16(halfSign | uint32(0x7c00)) } if halfExp <= 0 { if 14-halfExp > 24 { return uint16(halfSign) } c := coef | uint32(0x00800000) halfCoef := c >> uint32(14-halfExp) roundBit := uint32(1) << uint32(13-halfExp) if (c&roundBit) != 0 && (c&(3*roundBit-1)) != 0 { halfCoef++ } return uint16(halfSign | halfCoef) } uHalfExp := uint32(halfExp) << 10 halfCoef := coef >> 13 roundBit := uint32(0x00001000) if (coef&roundBit) != 0 && (coef&(3*roundBit-1)) != 0 { return uint16((halfSign | uHalfExp | halfCoef) + 1) } return uint16(halfSign | uHalfExp | halfCoef) }