package main import ( "fmt" "log" "time" "github.com/sugarme/gotch" "github.com/sugarme/gotch/nn" ts "github.com/sugarme/gotch/tensor" "github.com/sugarme/gotch/vision" ) const ( MnistDirCNN string = "../../data/mnist" epochsCNN = 100 batchCNN = 256 batchSize = 256 LrCNN = 1e-4 ) type Net struct { conv1 *nn.Conv2D conv2 *nn.Conv2D fc1 *nn.Linear fc2 *nn.Linear } func newNet(vs *nn.Path) *Net { conv1 := nn.NewConv2D(vs, 1, 32, 5, nn.DefaultConv2DConfig()) conv2 := nn.NewConv2D(vs, 32, 64, 5, nn.DefaultConv2DConfig()) fc1 := nn.NewLinear(vs, 1024, 1024, nn.DefaultLinearConfig()) fc2 := nn.NewLinear(vs, 1024, 10, nn.DefaultLinearConfig()) return &Net{ conv1, conv2, fc1, fc2} } func (n *Net) ForwardT(xs *ts.Tensor, train bool) *ts.Tensor { outView1 := xs.MustView([]int64{-1, 1, 28, 28}, false) defer outView1.MustDrop() outC1 := outView1.Apply(n.conv1) outMP1 := outC1.MaxPool2DDefault(2, true) defer outMP1.MustDrop() outC2 := outMP1.Apply(n.conv2) outMP2 := outC2.MaxPool2DDefault(2, true) outView2 := outMP2.MustView([]int64{-1, 1024}, true) defer outView2.MustDrop() outFC1 := outView2.Apply(n.fc1) outRelu := outFC1.MustRelu(true) defer outRelu.MustDrop() outDropout := ts.MustDropout(outRelu, 0.5, train) defer outDropout.MustDrop() return outDropout.Apply(n.fc2) } func runCNN1() { var ds *vision.Dataset ds = vision.LoadMNISTDir(MnistDirNN) testImages := ds.TestImages testLabels := ds.TestLabels cuda := gotch.CudaBuilder(0) vs := nn.NewVarStore(cuda.CudaIfAvailable()) // vs := nn.NewVarStore(gotch.CPU) net := newNet(vs.Root()) opt, err := nn.DefaultAdamConfig().Build(vs, LrCNN) if err != nil { log.Fatal(err) } var bestAccuracy float64 = 0.0 startTime := time.Now() for epoch := 0; epoch < epochsCNN; epoch++ { totalSize := ds.TrainImages.MustSize()[0] samples := int(totalSize) index := ts.MustRandperm(int64(totalSize), gotch.Int64, gotch.CPU) imagesTs := ds.TrainImages.MustIndexSelect(0, index, false) labelsTs := ds.TrainLabels.MustIndexSelect(0, index, false) batches := samples / batchSize batchIndex := 0 var epocLoss *ts.Tensor for i := 0; i < batches; i++ { start := batchIndex * batchSize size := batchSize if samples-start < batchSize { break } batchIndex += 1 // Indexing narrowIndex := ts.NewNarrow(int64(start), int64(start+size)) bImages := imagesTs.Idx(narrowIndex) bLabels := labelsTs.Idx(narrowIndex) bImages = bImages.MustTo(vs.Device(), true) bLabels = bLabels.MustTo(vs.Device(), true) logits := net.ForwardT(bImages, true) loss := logits.CrossEntropyForLogits(bLabels) // loss = loss.MustSetRequiresGrad(true, false) opt.BackwardStep(loss) epocLoss = loss.MustShallowClone() epocLoss.Detach_() // fmt.Printf("completed \t %v batches\t %.2f\n", i, loss.Float64Values()[0]) bImages.MustDrop() bLabels.MustDrop() } // vs.Freeze() testAccuracy := nn.BatchAccuracyForLogits(vs, net, testImages, testLabels, vs.Device(), 1024) // vs.Unfreeze() fmt.Printf("Epoch: %v\t Loss: %.2f \t Test accuracy: %.2f%%\n", epoch, epocLoss.Float64Values()[0], testAccuracy*100.0) if testAccuracy > bestAccuracy { bestAccuracy = testAccuracy } epocLoss.MustDrop() imagesTs.MustDrop() labelsTs.MustDrop() } fmt.Printf("Best test accuracy: %.2f%%\n", bestAccuracy*100.0) fmt.Printf("Taken time:\t%.2f mins\n", time.Since(startTime).Minutes()) }