gotch/tensor/tensor.go

192 lines
5.3 KiB
Go
Raw Normal View History

2020-05-28 08:30:17 +01:00
package tensor
//#include <stdlib.h>
import "C"
import (
"bytes"
"encoding/binary"
"fmt"
"reflect"
// "runtime"
"unsafe"
lib "github.com/sugarme/gotch/libtch"
)
type Tensor struct {
ctensor *t.C_tensor
}
var nativeEndian binary.ByteOrder
func init() {
buf := [2]byte{}
*(*uint16)(unsafe.Pointer(&buf[0])) = uint16(0xABCD)
switch buf {
case [2]byte{0xCD, 0xAB}:
nativeEndian = binary.LittleEndian
case [2]byte{0xAB, 0xCD}:
nativeEndian = binary.BigEndian
default:
panic("Could not determine native endianness.")
}
}
// FnOfSlice creates tensor from a slice data
func FnOfSlice() (retVal Tensor, err error) {
data := []int{0, 0, 0, 0}
shape := []int64{int64(len(data))}
nflattened := numElements(shape)
dtype := 3 // Kind.Int
eltSizeInBytes := 4 // Element Size in Byte for Int dtype
nbytes := eltSizeInBytes * int(uintptr(nflattened))
// NOTE: dataPrt is type of `*void` in C or type of `unsafe.Pointer` in Go
dataPtr := C.malloc(C.size_t(nbytes))
// Recall: 1 << 30 = 1 * 2 * 30
// Ref. See more at https://stackoverflow.com/questions/48756732
dataSlice := (*[1 << 30]byte)(dataPtr)[:nbytes:nbytes]
buf := bytes.NewBuffer(dataSlice[:0:nbytes])
encodeTensor(buf, reflect.ValueOf(data), shape)
c_tensor := lib.AtTensorOfData(dataPtr, shape, uint(len(shape)), uint(eltSizeInBytes), int(dtype))
retVal = Tensor{c_tensor}
// Read back created tensor values by C libtorch
readDataPtr := lib.AtDataPtr(retVal.c_tensor)
readDataSlice := (*[1 << 30]byte)(readDataPtr)[:nbytes:nbytes]
// typ := typeOf(dtype, shape)
typ := reflect.TypeOf(int32(0)) // C. type `int` ~ Go type `int32`
val := reflect.New(typ)
if err := decodeTensor(bytes.NewReader(readDataSlice), shape, typ, val); err != nil {
panic(fmt.Sprintf("unable to decode Tensor of type %v and shape %v - %v", dtype, shape, err))
}
tensorData := reflect.Indirect(val).Interface()
fmt.Println("%v", tensorData)
return retVal, nil
}
func numElements(shape []int64) int64 {
n := int64(1)
for _, d := range shape {
n *= d
}
return n
}
func encodeTensor(w *bytes.Buffer, v reflect.Value, shape []int64) error {
switch v.Kind() {
case reflect.Bool:
b := byte(0)
if v.Bool() {
b = 1
}
if err := w.WriteByte(b); err != nil {
return err
}
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
if err := binary.Write(w, nativeEndian, v.Interface()); err != nil {
return err
}
case reflect.Array, reflect.Slice:
// If current dimension is a slice, verify that it has the expected size
// Go's type system makes that guarantee for arrays.
if v.Kind() == reflect.Slice {
expected := int(shape[0])
if v.Len() != expected {
return fmt.Errorf("mismatched slice lengths: %d and %d", v.Len(), expected)
}
}
// Optimisation: if only one dimension is left we can use binary.Write() directly for this slice
if len(shape) == 1 && v.Len() > 0 {
switch v.Index(0).Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
return binary.Write(w, nativeEndian, v.Interface())
}
}
subShape := shape[1:]
for i := 0; i < v.Len(); i++ {
err := encodeTensor(w, v.Index(i), subShape)
if err != nil {
return err
}
}
default:
return fmt.Errorf("unsupported type %v", v.Type())
}
return nil
}
// decodeTensor decodes the Tensor from the buffer to ptr using the format
// specified in c_api.h. Use stringDecoder for String tensors.
func decodeTensor(r *bytes.Reader, shape []int64, typ reflect.Type, ptr reflect.Value) error {
switch typ.Kind() {
case reflect.Bool:
b, err := r.ReadByte()
if err != nil {
return err
}
ptr.Elem().SetBool(b == 1)
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
if err := binary.Read(r, nativeEndian, ptr.Interface()); err != nil {
return err
}
case reflect.Slice:
val := reflect.Indirect(ptr)
val.Set(reflect.MakeSlice(typ, int(shape[0]), int(shape[0])))
// Optimization: if only one dimension is left we can use binary.Read() directly for this slice
if len(shape) == 1 && val.Len() > 0 {
switch val.Index(0).Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
return binary.Read(r, nativeEndian, val.Interface())
}
}
for i := 0; i < val.Len(); i++ {
if err := decodeTensor(r, shape[1:], typ.Elem(), val.Index(i).Addr()); err != nil {
return err
}
}
default:
return fmt.Errorf("unsupported type %v", typ)
}
return nil
}
// // typeOf converts from a DType and Shape to the equivalent Go type.
// func typeOf(dt DType, shape []int64) reflect.Type {
// var ret reflect.Type
// for _, t := range types {
// if dt == DType(t.dataType) {
// ret = t.typ
// break
// }
// }
// if ret == nil {
// // TODO get tensor name
// panic(fmt.Sprintf("Unsupported DType %d", int(dt)))
// }
// for range shape {
// ret = reflect.SliceOf(ret)
// }
// return ret
// }