fyp/logic/models/train/torch/modelloader/modelloader.go

150 lines
3.4 KiB
Go

package imageloader
import (
"git.andr3h3nriqu3s.com/andr3/fyp/logic/db"
types "git.andr3h3nriqu3s.com/andr3/fyp/logic/db_types"
"git.andr3h3nriqu3s.com/andr3/gotch"
torch "git.andr3h3nriqu3s.com/andr3/gotch/ts"
"git.andr3h3nriqu3s.com/andr3/gotch/vision"
)
type Dataset struct {
TrainImages *torch.Tensor
TrainLabels *torch.Tensor
TestImages *torch.Tensor
TestLabels *torch.Tensor
TrainImagesSize int
TestImagesSize int
Device gotch.Device
}
func LoadImagesAndLables(db db.Db, m *types.BaseModel, mode types.DATA_POINT_MODE, classStart int, classEnd int) (imgs, labels *torch.Tensor, count int, err error) {
train_points, err := m.DataPoints(db, types.DATA_POINT_MODE_TRAINING)
if err != nil {
return
}
size := int64(classEnd - classStart + 1)
pimgs := []*torch.Tensor{}
plabels := []*torch.Tensor{}
for _, point := range train_points {
var img, label *torch.Tensor
img, err = vision.Load(point.Path)
if err != nil {
return
}
pimgs = append(pimgs, img)
t_label := make([]int, size)
if point.Class <= classEnd && point.Class >= classStart {
t_label[point.Class-classStart] = 1
}
label, err = torch.OfSlice(t_label)
if err != nil {
return
}
plabels = append(plabels, label)
}
imgs, err = torch.Concat(pimgs, 0)
if err != nil {
return
}
labels, err = torch.Stack(plabels, 0)
if err != nil {
return
}
count = len(pimgs)
imgs, err = torch.Stack(pimgs, 0)
labels, err = labels.ToDtype(gotch.Float, false, false, true)
if err != nil {
return
}
imgs, err = imgs.ToDtype(gotch.Float, false, false, true)
if err != nil {
return
}
return
}
func NewDataset(db db.Db, m *types.BaseModel, classStart int, classEnd int) (ds *Dataset, err error) {
trainImages, trainLabels, train_count, err := LoadImagesAndLables(db, m, types.DATA_POINT_MODE_TRAINING, classStart, classEnd)
if err != nil {
return
}
testImages, testLabels, test_count, err := LoadImagesAndLables(db, m, types.DATA_POINT_MODE_TESTING, classStart, classEnd)
if err != nil {
return
}
ds = &Dataset{
TrainImages: trainImages,
TrainLabels: trainLabels,
TestImages: testImages,
TestLabels: testLabels,
TrainImagesSize: train_count,
TestImagesSize: test_count,
Device: gotch.CPU,
}
return
}
func (ds *Dataset) To(device gotch.Device) (err error) {
ds.TrainImages, err = ds.TrainImages.ToDevice(device, ds.TrainImages.DType(), device.IsCuda(), true, true)
if err != nil {
return
}
ds.TrainLabels, err = ds.TrainLabels.ToDevice(device, ds.TrainLabels.DType(), device.IsCuda(), true, true)
if err != nil {
return
}
ds.TestImages, err = ds.TestImages.ToDevice(device, ds.TestImages.DType(), device.IsCuda(), true, true)
if err != nil {
return
}
ds.TestLabels, err = ds.TestLabels.ToDevice(device, ds.TestLabels.DType(), device.IsCuda(), true, true)
if err != nil {
return
}
ds.Device = device
return
}
func (ds *Dataset) TestIter(batchSize int64) *torch.Iter2 {
return torch.MustNewIter2(ds.TestImages, ds.TestLabels, batchSize)
}
func (ds *Dataset) TrainIter(batchSize int64) (iter *torch.Iter2, err error) {
train_images, err := ds.TrainImages.DetachCopy(false)
if err != nil {
return
}
train_labels, err := ds.TrainLabels.DetachCopy(false)
if err != nil {
return
}
iter, err = torch.NewIter2(train_images, train_labels, batchSize)
if err != nil {
return
}
return
}