1967 lines
51 KiB
Go
1967 lines
51 KiB
Go
package models_train
|
|
|
|
import (
|
|
"database/sql"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"os"
|
|
"os/exec"
|
|
"path"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"text/template"
|
|
|
|
model_classes "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/classes"
|
|
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/utils"
|
|
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/utils"
|
|
"github.com/charmbracelet/log"
|
|
)
|
|
|
|
const EPOCH_PER_RUN = 20
|
|
const MAX_EPOCH = 100
|
|
|
|
func shapeToSize(shape string) string {
|
|
split := strings.Split(shape, ",")
|
|
return strings.Join(split[:len(split)-1], ",")
|
|
}
|
|
|
|
func getDir() string {
|
|
dir, err := os.Getwd()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return dir
|
|
}
|
|
|
|
// This function creates a new model_definition
|
|
func MakeDefenition(db *sql.DB, model_id string, target_accuracy int) (id string, err error) {
|
|
id = ""
|
|
|
|
rows, err := db.Query("insert into model_definition (model_id, target_accuracy) values ($1, $2) returning id;", model_id, target_accuracy)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
return id, errors.New("Something wrong!")
|
|
}
|
|
err = rows.Scan(&id)
|
|
return
|
|
}
|
|
|
|
func ModelDefinitionUpdateStatus(c *Context, id string, status ModelDefinitionStatus) (err error) {
|
|
_, err = c.Db.Exec("update model_definition set status = $1 where id = $2", status, id)
|
|
return
|
|
}
|
|
|
|
func UpdateStatus(c *Context, table string, id string, status int) (err error) {
|
|
_, err = c.Db.Exec(fmt.Sprintf("update %s set status = $1 where id = $2", table), status, id)
|
|
return
|
|
}
|
|
|
|
func MakeLayer(db *sql.DB, def_id string, layer_order int, layer_type LayerType, shape string) (err error) {
|
|
_, err = db.Exec("insert into model_definition_layer (def_id, layer_order, layer_type, shape) values ($1, $2, $3, $4)", def_id, layer_order, layer_type, shape)
|
|
return
|
|
}
|
|
|
|
func MakeLayerExpandable(db *sql.DB, def_id string, layer_order int, layer_type LayerType, shape string, exp_type int) (err error) {
|
|
_, err = db.Exec("insert into model_definition_layer (def_id, layer_order, layer_type, shape, exp_type) values ($1, $2, $3, $4, $5)", def_id, layer_order, layer_type, shape, exp_type)
|
|
return
|
|
}
|
|
|
|
func generateCvs(c *Context, run_path string, model_id string) (count int, err error) {
|
|
|
|
var co struct {
|
|
Count int `db:"count(*)"`
|
|
}
|
|
err = GetDBOnce(c, &co, "model_classes where model_id=$1;", model_id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
count = co.Count
|
|
|
|
data, err := c.Db.Query("select mdp.id, mc.class_order, mdp.file_path from model_data_point as mdp inner join model_classes as mc on mc.id = mdp.class_id where mc.model_id = $1 and mdp.model_mode=$2;", model_id, model_classes.DATA_POINT_MODE_TRAINING)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer data.Close()
|
|
|
|
f, err := os.Create(path.Join(run_path, "train.csv"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
f.Write([]byte("Id,Index\n"))
|
|
|
|
for data.Next() {
|
|
var id string
|
|
var class_order int
|
|
var file_path string
|
|
if err = data.Scan(&id, &class_order, &file_path); err != nil {
|
|
return
|
|
}
|
|
if file_path == "id://" {
|
|
f.Write([]byte(id + "," + strconv.Itoa(class_order) + "\n"))
|
|
} else {
|
|
return count, errors.New("TODO generateCvs to file_path " + file_path)
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func setModelClassStatus(c *Context, status ModelClassStatus, filter string, args ...any) (err error) {
|
|
_, err = c.Db.Exec(fmt.Sprintf("update model_classes set status=%d where %s", status, filter), args...)
|
|
return
|
|
}
|
|
|
|
func generateCvsExp(c *Context, run_path string, model_id string, doPanic bool) (count int, err error) {
|
|
|
|
var co struct {
|
|
Count int `db:"count(*)"`
|
|
}
|
|
err = GetDBOnce(c, &co, "model_classes where model_id=$1 and status=$2;", model_id, MODEL_CLASS_STATUS_TRAINING)
|
|
if err != nil {
|
|
return
|
|
}
|
|
count = co.Count
|
|
|
|
if count == 0 {
|
|
err = setModelClassStatus(c, MODEL_CLASS_STATUS_TRAINING, "model_id=$1 and status=$2;", model_id, MODEL_CLASS_STATUS_TO_TRAIN)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
if doPanic {
|
|
return 0, errors.New("No model classes available")
|
|
}
|
|
|
|
return generateCvsExp(c, run_path, model_id, true)
|
|
}
|
|
|
|
data, err := c.Db.Query("select mdp.id, mc.class_order, mdp.file_path from model_data_point as mdp inner join model_classes as mc on mc.id = mdp.class_id where mc.model_id = $1 and mdp.model_mode=$2 and mc.status=$3;", model_id, model_classes.DATA_POINT_MODE_TRAINING, MODEL_CLASS_STATUS_TRAINING)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer data.Close()
|
|
|
|
f, err := os.Create(path.Join(run_path, "train.csv"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
f.Write([]byte("Id,Index\n"))
|
|
|
|
for data.Next() {
|
|
var id string
|
|
var class_order int
|
|
var file_path string
|
|
if err = data.Scan(&id, &class_order, &file_path); err != nil {
|
|
return
|
|
}
|
|
if file_path == "id://" {
|
|
f.Write([]byte(id + "," + strconv.Itoa(class_order) + "\n"))
|
|
} else {
|
|
return count, errors.New("TODO generateCvs to file_path " + file_path)
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func trainDefinition(c *Context, model *BaseModel, definition_id string, load_prev bool) (accuracy float64, err error) {
|
|
c.Logger.Warn("About to start training definition")
|
|
accuracy = 0
|
|
layers, err := c.Db.Query("select layer_type, shape from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer layers.Close()
|
|
|
|
type layerrow struct {
|
|
LayerType int
|
|
Shape string
|
|
LayerNum int
|
|
}
|
|
|
|
got := []layerrow{}
|
|
i := 1
|
|
|
|
for layers.Next() {
|
|
var row = layerrow{}
|
|
if err = layers.Scan(&row.LayerType, &row.Shape); err != nil {
|
|
return
|
|
}
|
|
row.Shape = shapeToSize(row.Shape)
|
|
row.LayerNum = 1
|
|
got = append(got, row)
|
|
i = i + 1
|
|
}
|
|
|
|
// Generate run folder
|
|
run_path := path.Join("/tmp", model.Id, "defs", definition_id)
|
|
|
|
err = os.MkdirAll(run_path, os.ModePerm)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
classCount, err := generateCvs(c, run_path, model.Id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Create python script
|
|
f, err := os.Create(path.Join(run_path, "run.py"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
|
|
tmpl, err := template.New("python_model_template.py").ParseFiles("views/py/python_model_template.py")
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Copy result around
|
|
result_path := path.Join("savedData", model.Id, "defs", definition_id)
|
|
|
|
if err = tmpl.Execute(f, AnyMap{
|
|
"Layers": got,
|
|
"Size": got[0].Shape,
|
|
"DataDir": path.Join(getDir(), "savedData", model.Id, "data"),
|
|
"RunPath": run_path,
|
|
"ColorMode": model.ImageMode,
|
|
"Model": model,
|
|
"EPOCH_PER_RUN": EPOCH_PER_RUN,
|
|
"DefId": definition_id,
|
|
"LoadPrev": load_prev,
|
|
"LastModelRunPath": path.Join(getDir(), result_path, "model.keras"),
|
|
"SaveModelPath": path.Join(getDir(), result_path),
|
|
"Depth": classCount,
|
|
"StartPoint": 0,
|
|
"Host": (*c.Handle).Config.Hostname,
|
|
}); err != nil {
|
|
return
|
|
}
|
|
|
|
// Run the command
|
|
out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).CombinedOutput()
|
|
if err != nil {
|
|
c.Logger.Debug(string(out))
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("Python finished running")
|
|
|
|
if err = os.MkdirAll(result_path, os.ModePerm); err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy_file, err := os.Open(path.Join(run_path, "accuracy.val"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer accuracy_file.Close()
|
|
|
|
accuracy_file_bytes, err := io.ReadAll(accuracy_file)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy, err = strconv.ParseFloat(string(accuracy_file_bytes), 64)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
os.RemoveAll(run_path)
|
|
|
|
c.Logger.Info("Model finished training!", "accuracy", accuracy)
|
|
return
|
|
}
|
|
|
|
func generateCvsExpandExp(c *Context, run_path string, model_id string, offset int, doPanic bool) (count_re int, err error) {
|
|
|
|
var co struct {
|
|
Count int `db:"count(*)"`
|
|
}
|
|
err = GetDBOnce(c, &co, "model_classes where model_id=$1 and status=$2;", model_id, MODEL_CLASS_STATUS_TRAINING)
|
|
if err != nil {
|
|
return
|
|
}
|
|
c.Logger.Info("test here", "count", co)
|
|
count_re = co.Count
|
|
count := co.Count
|
|
|
|
if count == 0 {
|
|
err = setModelClassStatus(c, MODEL_CLASS_STATUS_TRAINING, "model_id=$1 and status=$2;", model_id, MODEL_CLASS_STATUS_TO_TRAIN)
|
|
if err != nil {
|
|
return
|
|
} else if doPanic {
|
|
return 0, errors.New("No model classes available")
|
|
}
|
|
return generateCvsExpandExp(c, run_path, model_id, offset, true)
|
|
}
|
|
|
|
data, err := c.Db.Query("select mdp.id, mc.class_order, mdp.file_path from model_data_point as mdp inner join model_classes as mc on mc.id = mdp.class_id where mc.model_id = $1 and mdp.model_mode=$2 and mc.status=$3;", model_id, model_classes.DATA_POINT_MODE_TRAINING, MODEL_CLASS_STATUS_TRAINING)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer data.Close()
|
|
|
|
f, err := os.Create(path.Join(run_path, "train.csv"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
f.Write([]byte("Id,Index\n"))
|
|
|
|
count = 0
|
|
|
|
for data.Next() {
|
|
var id string
|
|
var class_order int
|
|
var file_path string
|
|
if err = data.Scan(&id, &class_order, &file_path); err != nil {
|
|
return
|
|
}
|
|
if file_path == "id://" {
|
|
f.Write([]byte(id + "," + strconv.Itoa(class_order-offset) + "\n"))
|
|
} else {
|
|
return count, errors.New("TODO generateCvs to file_path " + file_path)
|
|
}
|
|
count += 1
|
|
}
|
|
|
|
//
|
|
// This is to load some extra data so that the model has more things to train on
|
|
//
|
|
|
|
data_other, err := c.Db.Query("select mdp.id, mc.class_order, mdp.file_path from model_data_point as mdp inner join model_classes as mc on mc.id = mdp.class_id where mc.model_id = $1 and mdp.model_mode=$2 and mc.status=$3 limit $4;", model_id, model_classes.DATA_POINT_MODE_TRAINING, MODEL_CLASS_STATUS_TRAINED, count)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer data_other.Close()
|
|
|
|
for data_other.Next() {
|
|
var id string
|
|
var class_order int
|
|
var file_path string
|
|
if err = data_other.Scan(&id, &class_order, &file_path); err != nil {
|
|
return
|
|
}
|
|
if file_path == "id://" {
|
|
f.Write([]byte(id + "," + strconv.Itoa(-1) + "\n"))
|
|
} else {
|
|
return count, errors.New("TODO generateCvs to file_path " + file_path)
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func trainDefinitionExpandExp(c *Context, model *BaseModel, definition_id string, load_prev bool) (accuracy float64, err error) {
|
|
accuracy = 0
|
|
|
|
c.Logger.Warn("About to retrain model")
|
|
|
|
// Get untrained models heads
|
|
|
|
type ExpHead struct {
|
|
Id string
|
|
Start int `db:"range_start"`
|
|
End int `db:"range_end"`
|
|
}
|
|
|
|
// status = 2 (INIT) 3 (TRAINING)
|
|
heads, err := GetDbMultitple[ExpHead](c, "exp_model_head where def_id=$1 and (status = 2 or status = 3)", definition_id)
|
|
if err != nil {
|
|
return
|
|
} else if len(heads) == 0 {
|
|
log.Error("Failed to get the exp head of the model")
|
|
return
|
|
} else if len(heads) != 1 {
|
|
log.Error("This training function can only train one model at the time")
|
|
err = errors.New("This training function can only train one model at the time")
|
|
return
|
|
}
|
|
|
|
exp := heads[0]
|
|
|
|
c.Logger.Info("Got exp head", "head", exp)
|
|
|
|
if err = UpdateStatus(c, "exp_model_head", exp.Id, MODEL_DEFINITION_STATUS_TRAINING); err != nil {
|
|
return
|
|
}
|
|
|
|
layers, err := c.Db.Query("select layer_type, shape, exp_type from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer layers.Close()
|
|
|
|
type layerrow struct {
|
|
LayerType int
|
|
Shape string
|
|
ExpType int
|
|
LayerNum int
|
|
}
|
|
|
|
got := []layerrow{}
|
|
|
|
i := 1
|
|
var last *layerrow = nil
|
|
got_2 := false
|
|
|
|
var first *layerrow = nil
|
|
|
|
for layers.Next() {
|
|
var row = layerrow{}
|
|
if err = layers.Scan(&row.LayerType, &row.Shape, &row.ExpType); err != nil {
|
|
return
|
|
}
|
|
|
|
// Keep track of the first layer so we can keep the size of the image
|
|
if first == nil {
|
|
first = &row
|
|
}
|
|
|
|
row.LayerNum = i
|
|
row.Shape = shapeToSize(row.Shape)
|
|
if row.ExpType == 2 {
|
|
if !got_2 {
|
|
got = append(got, *last)
|
|
got_2 = true
|
|
}
|
|
got = append(got, row)
|
|
}
|
|
last = &row
|
|
i += 1
|
|
}
|
|
|
|
got = append(got, layerrow{
|
|
LayerType: LAYER_DENSE,
|
|
Shape: fmt.Sprintf("%d", exp.End-exp.Start+1),
|
|
ExpType: 2,
|
|
LayerNum: i,
|
|
})
|
|
|
|
c.Logger.Info("Got layers", "layers", got)
|
|
|
|
// Generate run folder
|
|
run_path := path.Join("/tmp", model.Id+"-defs-"+definition_id+"-retrain")
|
|
|
|
err = os.MkdirAll(run_path, os.ModePerm)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
classCount, err := generateCvsExpandExp(c, run_path, model.Id, exp.Start, false)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("Generated cvs", "classCount", classCount)
|
|
|
|
// TODO update the run script
|
|
|
|
// Create python script
|
|
f, err := os.Create(path.Join(run_path, "run.py"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
|
|
c.Logger.Info("About to run python!")
|
|
|
|
tmpl, err := template.New("python_model_template_expand.py").ParseFiles("views/py/python_model_template_expand.py")
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Copy result around
|
|
result_path := path.Join("savedData", model.Id, "defs", definition_id)
|
|
|
|
if err = tmpl.Execute(f, AnyMap{
|
|
"Layers": got,
|
|
"Size": first.Shape,
|
|
"DataDir": path.Join(getDir(), "savedData", model.Id, "data"),
|
|
"HeadId": exp.Id,
|
|
"RunPath": run_path,
|
|
"ColorMode": model.ImageMode,
|
|
"Model": model,
|
|
"EPOCH_PER_RUN": EPOCH_PER_RUN,
|
|
"LoadPrev": load_prev,
|
|
"BaseModel": path.Join(getDir(), result_path, "base", "model.keras"),
|
|
"LastModelRunPath": path.Join(getDir(), result_path, "head", exp.Id, "model.keras"),
|
|
"SaveModelPath": path.Join(getDir(), result_path, "head", exp.Id),
|
|
"Depth": classCount,
|
|
"StartPoint": 0,
|
|
"Host": (*c.Handle).Config.Hostname,
|
|
}); err != nil {
|
|
return
|
|
}
|
|
|
|
// Run the command
|
|
out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).CombinedOutput()
|
|
if err != nil {
|
|
c.Logger.Warn("Python failed to run", "err", err, "out", string(out))
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("Python finished running")
|
|
|
|
if err = os.MkdirAll(result_path, os.ModePerm); err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy_file, err := os.Open(path.Join(run_path, "accuracy.val"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer accuracy_file.Close()
|
|
|
|
accuracy_file_bytes, err := io.ReadAll(accuracy_file)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy, err = strconv.ParseFloat(string(accuracy_file_bytes), 64)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
os.RemoveAll(run_path)
|
|
c.Logger.Info("Model finished training!", "accuracy", accuracy)
|
|
return
|
|
}
|
|
|
|
func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load_prev bool) (accuracy float64, err error) {
|
|
accuracy = 0
|
|
|
|
c.Logger.Warn("About to start training definition")
|
|
|
|
// Get untrained models heads
|
|
|
|
type ExpHead struct {
|
|
Id string
|
|
Start int `db:"range_start"`
|
|
End int `db:"range_end"`
|
|
}
|
|
|
|
// status = 2 (INIT) 3 (TRAINING)
|
|
heads, err := GetDbMultitple[ExpHead](c, "exp_model_head where def_id=$1 and (status = 2 or status = 3)", definition_id)
|
|
if err != nil {
|
|
return
|
|
} else if len(heads) == 0 {
|
|
log.Error("Failed to get the exp head of the model")
|
|
return
|
|
} else if len(heads) != 1 {
|
|
log.Error("This training function can only train one model at the time")
|
|
err = errors.New("This training function can only train one model at the time")
|
|
return
|
|
}
|
|
|
|
exp := heads[0]
|
|
|
|
if err = UpdateStatus(c, "exp_model_head", exp.Id, MODEL_DEFINITION_STATUS_TRAINING); err != nil {
|
|
return
|
|
}
|
|
|
|
layers, err := c.Db.Query("select layer_type, shape, exp_type from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer layers.Close()
|
|
|
|
type layerrow struct {
|
|
LayerType int
|
|
Shape string
|
|
ExpType int
|
|
LayerNum int
|
|
}
|
|
|
|
got := []layerrow{}
|
|
i := 1
|
|
|
|
for layers.Next() {
|
|
var row = layerrow{}
|
|
if err = layers.Scan(&row.LayerType, &row.Shape, &row.ExpType); err != nil {
|
|
return
|
|
}
|
|
row.LayerNum = i
|
|
row.Shape = shapeToSize(row.Shape)
|
|
got = append(got, row)
|
|
i += 1
|
|
}
|
|
|
|
got = append(got, layerrow{
|
|
LayerType: LAYER_DENSE,
|
|
Shape: fmt.Sprintf("%d", exp.End-exp.Start+1),
|
|
ExpType: 2,
|
|
LayerNum: i,
|
|
})
|
|
|
|
// Generate run folder
|
|
run_path := path.Join("/tmp", model.Id+"-defs-"+definition_id)
|
|
|
|
err = os.MkdirAll(run_path, os.ModePerm)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
classCount, err := generateCvsExp(c, run_path, model.Id, false)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// TODO update the run script
|
|
|
|
// Create python script
|
|
f, err := os.Create(path.Join(run_path, "run.py"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
|
|
tmpl, err := template.New("python_model_template.py").ParseFiles("views/py/python_model_template.py")
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Copy result around
|
|
result_path := path.Join("savedData", model.Id, "defs", definition_id)
|
|
|
|
if err = tmpl.Execute(f, AnyMap{
|
|
"Layers": got,
|
|
"Size": got[0].Shape,
|
|
"DataDir": path.Join(getDir(), "savedData", model.Id, "data"),
|
|
"HeadId": exp.Id,
|
|
"RunPath": run_path,
|
|
"ColorMode": model.ImageMode,
|
|
"Model": model,
|
|
"EPOCH_PER_RUN": EPOCH_PER_RUN,
|
|
"LoadPrev": load_prev,
|
|
"LastModelRunPath": path.Join(getDir(), result_path, "model.keras"),
|
|
"SaveModelPath": path.Join(getDir(), result_path),
|
|
"Depth": classCount,
|
|
"StartPoint": 0,
|
|
"Host": (*c.Handle).Config.Hostname,
|
|
}); err != nil {
|
|
return
|
|
}
|
|
|
|
// Run the command
|
|
out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).CombinedOutput()
|
|
if err != nil {
|
|
c.Logger.Debug(string(out))
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("Python finished running")
|
|
|
|
if err = os.MkdirAll(result_path, os.ModePerm); err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy_file, err := os.Open(path.Join(run_path, "accuracy.val"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer accuracy_file.Close()
|
|
|
|
accuracy_file_bytes, err := io.ReadAll(accuracy_file)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
accuracy, err = strconv.ParseFloat(string(accuracy_file_bytes), 64)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
os.RemoveAll(run_path)
|
|
c.Logger.Info("Model finished training!", "accuracy", accuracy)
|
|
return
|
|
}
|
|
|
|
func remove[T interface{}](lst []T, i int) []T {
|
|
lng := len(lst)
|
|
if i >= lng {
|
|
return []T{}
|
|
}
|
|
|
|
if i+1 >= lng {
|
|
return lst[:lng-1]
|
|
}
|
|
|
|
if i == 0 {
|
|
return lst[1:]
|
|
}
|
|
|
|
return append(lst[:i], lst[i+1:]...)
|
|
}
|
|
|
|
type TrainModelRow struct {
|
|
id string
|
|
target_accuracy int
|
|
epoch int
|
|
acuracy float64
|
|
}
|
|
|
|
type TraingModelRowDefinitions []TrainModelRow
|
|
|
|
func (nf TraingModelRowDefinitions) Len() int { return len(nf) }
|
|
func (nf TraingModelRowDefinitions) Swap(i, j int) { nf[i], nf[j] = nf[j], nf[i] }
|
|
func (nf TraingModelRowDefinitions) Less(i, j int) bool {
|
|
return nf[i].acuracy < nf[j].acuracy
|
|
}
|
|
|
|
type ToRemoveList []int
|
|
|
|
func (nf ToRemoveList) Len() int { return len(nf) }
|
|
func (nf ToRemoveList) Swap(i, j int) { nf[i], nf[j] = nf[j], nf[i] }
|
|
func (nf ToRemoveList) Less(i, j int) bool {
|
|
return nf[i] < nf[j]
|
|
}
|
|
|
|
func trainModel(c *Context, model *BaseModel) {
|
|
|
|
definitionsRows, err := c.Db.Query("select id, target_accuracy, epoch from model_definition where status=$1 and model_id=$2", MODEL_DEFINITION_STATUS_INIT, model.Id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train Model! Err:")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
defer definitionsRows.Close()
|
|
|
|
var definitions TraingModelRowDefinitions = []TrainModelRow{}
|
|
|
|
for definitionsRows.Next() {
|
|
var rowv TrainModelRow
|
|
rowv.acuracy = 0
|
|
if err = definitionsRows.Scan(&rowv.id, &rowv.target_accuracy, &rowv.epoch); err != nil {
|
|
c.Logger.Error("Failed to train Model Could not read definition from db!Err:")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
definitions = append(definitions, rowv)
|
|
}
|
|
|
|
if len(definitions) == 0 {
|
|
c.Logger.Error("No Definitions defined!")
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
firstRound := true
|
|
finished := false
|
|
|
|
for {
|
|
var toRemove ToRemoveList = []int{}
|
|
for i, def := range definitions {
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_TRAINING)
|
|
accuracy, err := trainDefinition(c, model, def.id, !firstRound)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:", "err", err)
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
toRemove = append(toRemove, i)
|
|
continue
|
|
}
|
|
def.epoch += EPOCH_PER_RUN
|
|
accuracy = accuracy * 100
|
|
def.acuracy = float64(accuracy)
|
|
|
|
definitions[i].epoch += EPOCH_PER_RUN
|
|
definitions[i].acuracy = accuracy
|
|
|
|
if accuracy >= float64(def.target_accuracy) {
|
|
c.Logger.Info("Found a definition that reaches target_accuracy!")
|
|
_, err = c.Db.Exec("update model_definition set accuracy=$1, status=$2, epoch=$3 where id=$4", accuracy, MODEL_DEFINITION_STATUS_TRANIED, def.epoch, def.id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
_, err = c.Db.Exec("update model_definition set status=$1 where id!=$2 and model_id=$3 and status!=$4", MODEL_DEFINITION_STATUS_CANCELD_TRAINING, def.id, model.Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
finished = true
|
|
break
|
|
}
|
|
|
|
if def.epoch > MAX_EPOCH {
|
|
fmt.Printf("Failed to train definition! Accuracy less %f < %d\n", accuracy, def.target_accuracy)
|
|
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
toRemove = append(toRemove, i)
|
|
continue
|
|
}
|
|
|
|
_, err = c.Db.Exec("update model_definition set accuracy=$1, epoch=$2, status=$3 where id=$4", accuracy, def.epoch, MODEL_DEFINITION_STATUS_PAUSED_TRAINING, def.id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
}
|
|
|
|
firstRound = false
|
|
if finished {
|
|
break
|
|
}
|
|
|
|
sort.Sort(sort.Reverse(toRemove))
|
|
|
|
c.Logger.Info("Round done", "toRemove", toRemove)
|
|
|
|
for _, n := range toRemove {
|
|
definitions = remove(definitions, n)
|
|
}
|
|
|
|
len_def := len(definitions)
|
|
|
|
if len_def == 0 {
|
|
break
|
|
}
|
|
|
|
if len_def == 1 {
|
|
continue
|
|
}
|
|
|
|
sort.Sort(sort.Reverse(definitions))
|
|
|
|
acc := definitions[0].acuracy - 20.0
|
|
|
|
c.Logger.Info("Training models, Highest acc", "acc", definitions[0].acuracy, "mod_acc", acc)
|
|
|
|
toRemove = []int{}
|
|
for i, def := range definitions {
|
|
if def.acuracy < acc {
|
|
toRemove = append(toRemove, i)
|
|
}
|
|
}
|
|
|
|
c.Logger.Info("Removing due to accuracy", "toRemove", toRemove)
|
|
|
|
sort.Sort(sort.Reverse(toRemove))
|
|
for _, n := range toRemove {
|
|
c.Logger.Warn("Removing definition not fast enough learning", "n", n)
|
|
ModelDefinitionUpdateStatus(c, definitions[n].id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
definitions = remove(definitions, n)
|
|
}
|
|
}
|
|
|
|
rows, err := c.Db.Query("select id from model_definition where model_id=$1 and status=$2 order by accuracy desc limit 1;", model.Id, MODEL_DEFINITION_STATUS_TRANIED)
|
|
if err != nil {
|
|
c.Logger.Error("DB: failed to read definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
// TODO Make the Model status have a message
|
|
c.Logger.Error("All definitions failed to train!")
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
var id string
|
|
if err = rows.Scan(&id); err != nil {
|
|
c.Logger.Error("Failed to read id:")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
if _, err = c.Db.Exec("update model_definition set status=$1 where id=$2;", MODEL_DEFINITION_STATUS_READY, id); err != nil {
|
|
c.Logger.Error("Failed to update model definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
to_delete, err := c.Db.Query("select id from model_definition where status != $1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to select model_definition to delete")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
defer to_delete.Close()
|
|
|
|
for to_delete.Next() {
|
|
var id string
|
|
if err = to_delete.Scan(&id); err != nil {
|
|
c.Logger.Error("Failed to scan the id of a model_definition to delete")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
os.RemoveAll(path.Join("savedData", model.Id, "defs", id))
|
|
}
|
|
|
|
// TODO Check if returning also works here
|
|
if _, err = c.Db.Exec("delete from model_definition where status!=$1 and model_id=$2;", MODEL_DEFINITION_STATUS_READY, model.Id); err != nil {
|
|
c.Logger.Error("Failed to delete model_definition")
|
|
c.Logger.Error(err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
return
|
|
}
|
|
|
|
ModelUpdateStatus(c, model.Id, READY)
|
|
}
|
|
|
|
type TrainModelRowUsable struct {
|
|
Id string
|
|
TargetAccuracy int `db:"target_accuracy"`
|
|
Epoch int
|
|
Acuracy float64 `db:"0"`
|
|
}
|
|
|
|
type TrainModelRowUsables []*TrainModelRowUsable
|
|
|
|
func (nf TrainModelRowUsables) Len() int { return len(nf) }
|
|
func (nf TrainModelRowUsables) Swap(i, j int) { nf[i], nf[j] = nf[j], nf[i] }
|
|
func (nf TrainModelRowUsables) Less(i, j int) bool {
|
|
return nf[i].Acuracy < nf[j].Acuracy
|
|
}
|
|
|
|
func trainModelExp(c *Context, model *BaseModel) {
|
|
var err error = nil
|
|
|
|
failed := func(msg string) {
|
|
c.Logger.Error(msg, "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
}
|
|
|
|
var definitions TrainModelRowUsables
|
|
|
|
definitions, err = GetDbMultitple[TrainModelRowUsable](c, "model_definition where status=$1 and model_id=$2", MODEL_DEFINITION_STATUS_INIT, model.Id)
|
|
if err != nil {
|
|
failed("Failed to get definitions")
|
|
return
|
|
}
|
|
if len(definitions) == 0 {
|
|
failed("No Definitions defined!")
|
|
return
|
|
}
|
|
|
|
firstRound := true
|
|
finished := false
|
|
|
|
for {
|
|
var toRemove ToRemoveList = []int{}
|
|
for i, def := range definitions {
|
|
ModelDefinitionUpdateStatus(c, def.Id, MODEL_DEFINITION_STATUS_TRAINING)
|
|
accuracy, err := trainDefinitionExp(c, model, def.Id, !firstRound)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to train definition!Err:", "err", err)
|
|
ModelDefinitionUpdateStatus(c, def.Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
toRemove = append(toRemove, i)
|
|
continue
|
|
}
|
|
def.Epoch += EPOCH_PER_RUN
|
|
accuracy = accuracy * 100
|
|
def.Acuracy = float64(accuracy)
|
|
|
|
definitions[i].Epoch += EPOCH_PER_RUN
|
|
definitions[i].Acuracy = accuracy
|
|
|
|
if accuracy >= float64(def.TargetAccuracy) {
|
|
c.Logger.Info("Found a definition that reaches target_accuracy!")
|
|
_, err = c.Db.Exec("update model_definition set accuracy=$1, status=$2, epoch=$3 where id=$4", accuracy, MODEL_DEFINITION_STATUS_TRANIED, def.Epoch, def.Id)
|
|
if err != nil {
|
|
failed("Failed to train definition!")
|
|
return
|
|
}
|
|
|
|
_, err = c.Db.Exec("update model_definition set status=$1 where id!=$2 and model_id=$3 and status!=$4", MODEL_DEFINITION_STATUS_CANCELD_TRAINING, def.Id, model.Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
if err != nil {
|
|
failed("Failed to train definition!")
|
|
return
|
|
}
|
|
|
|
_, err = c.Db.Exec("update exp_model_head set status=$1 where def_id=$2;", MODEL_HEAD_STATUS_READY, def.Id)
|
|
if err != nil {
|
|
failed("Failed to train definition!")
|
|
return
|
|
}
|
|
|
|
finished = true
|
|
break
|
|
}
|
|
|
|
if def.Epoch > MAX_EPOCH {
|
|
fmt.Printf("Failed to train definition! Accuracy less %f < %d\n", accuracy, def.TargetAccuracy)
|
|
ModelDefinitionUpdateStatus(c, def.Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
toRemove = append(toRemove, i)
|
|
continue
|
|
}
|
|
|
|
_, err = c.Db.Exec("update model_definition set accuracy=$1, epoch=$2, status=$3 where id=$4", accuracy, def.Epoch, MODEL_DEFINITION_STATUS_PAUSED_TRAINING, def.Id)
|
|
if err != nil {
|
|
failed("Failed to train definition!")
|
|
return
|
|
}
|
|
}
|
|
|
|
firstRound = false
|
|
if finished {
|
|
break
|
|
}
|
|
|
|
sort.Sort(sort.Reverse(toRemove))
|
|
|
|
c.Logger.Info("Round done", "toRemove", toRemove)
|
|
|
|
for _, n := range toRemove {
|
|
definitions = remove(definitions, n)
|
|
}
|
|
|
|
len_def := len(definitions)
|
|
|
|
if len_def == 0 {
|
|
break
|
|
} else if len_def == 1 {
|
|
continue
|
|
}
|
|
|
|
sort.Sort(sort.Reverse(definitions))
|
|
acc := definitions[0].Acuracy - 20.0
|
|
|
|
c.Logger.Info("Training models, Highest acc", "acc", definitions[0].Acuracy, "mod_acc", acc)
|
|
|
|
toRemove = []int{}
|
|
for i, def := range definitions {
|
|
if def.Acuracy < acc {
|
|
toRemove = append(toRemove, i)
|
|
}
|
|
}
|
|
|
|
c.Logger.Info("Removing due to accuracy", "toRemove", toRemove)
|
|
|
|
sort.Sort(sort.Reverse(toRemove))
|
|
for _, n := range toRemove {
|
|
c.Logger.Warn("Removing definition not fast enough learning", "n", n)
|
|
ModelDefinitionUpdateStatus(c, definitions[n].Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
|
definitions = remove(definitions, n)
|
|
}
|
|
}
|
|
|
|
var dat JustId
|
|
|
|
err = GetDBOnce(c, &dat, "model_definition where model_id=$1 and status=$2 order by accuracy desc limit 1;", model.Id, MODEL_DEFINITION_STATUS_TRANIED)
|
|
if err == NotFoundError {
|
|
// Set the class status to trained
|
|
err = setModelClassStatus(c, MODEL_CLASS_STATUS_TO_TRAIN, "model_id=$1 and status=$2;", model.Id, MODEL_CLASS_STATUS_TRAINING)
|
|
if err != nil {
|
|
failed("All definitions failed to train! And Failed to set class status")
|
|
return
|
|
}
|
|
|
|
failed("All definitions failed to train!")
|
|
return
|
|
} else if err != nil {
|
|
failed("DB: failed to read definition")
|
|
return
|
|
}
|
|
|
|
if _, err = c.Db.Exec("update model_definition set status=$1 where id=$2;", MODEL_DEFINITION_STATUS_READY, dat.Id); err != nil {
|
|
failed("Failed to update model definition")
|
|
return
|
|
}
|
|
|
|
to_delete, err := GetDbMultitple[JustId](c, "model_definition where status!=$1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id)
|
|
if err != nil {
|
|
failed("Failed to select model_definition to delete")
|
|
return
|
|
}
|
|
|
|
for _, d := range to_delete {
|
|
os.RemoveAll(path.Join("savedData", model.Id, "defs", d.Id))
|
|
}
|
|
|
|
// TODO Check if returning also works here
|
|
if _, err = c.Db.Exec("delete from model_definition where status!=$1 and model_id=$2;", MODEL_DEFINITION_STATUS_READY, model.Id); err != nil {
|
|
failed("Failed to delete model_definition")
|
|
return
|
|
}
|
|
|
|
if err = splitModel(c, model); err != nil {
|
|
err = setModelClassStatus(c, MODEL_CLASS_STATUS_TO_TRAIN, "model_id=$1 and status=$2;", model.Id, MODEL_CLASS_STATUS_TRAINING)
|
|
if err != nil {
|
|
failed("Failed to split the model! And Failed to set class status")
|
|
return
|
|
}
|
|
|
|
failed("Failed to split the model")
|
|
return
|
|
}
|
|
|
|
// Set the class status to trained
|
|
err = setModelClassStatus(c, MODEL_CLASS_STATUS_TRAINED, "model_id=$1 and status=$2;", model.Id, MODEL_CLASS_STATUS_TRAINING)
|
|
if err != nil {
|
|
failed("Failed to set class status")
|
|
return
|
|
}
|
|
|
|
// There should only be one def availabale
|
|
def := JustId{}
|
|
if err = GetDBOnce(c, &def, "model_definition where model_id=$1", model.Id); err != nil {
|
|
return
|
|
}
|
|
|
|
// Remove the base model
|
|
c.Logger.Warn("Removing base model for", "model", model.Id, "def", def.Id)
|
|
os.RemoveAll(path.Join("savedData", model.Id, "defs", def.Id, "model"))
|
|
os.RemoveAll(path.Join("savedData", model.Id, "defs", def.Id, "model.keras"))
|
|
|
|
ModelUpdateStatus(c, model.Id, READY)
|
|
}
|
|
|
|
func splitModel(c *Context, model *BaseModel) (err error) {
|
|
|
|
def := JustId{}
|
|
if err = GetDBOnce(c, &def, "model_definition where model_id=$1", model.Id); err != nil {
|
|
return
|
|
}
|
|
|
|
head := JustId{}
|
|
if err = GetDBOnce(c, &head, "exp_model_head where def_id=$1", def.Id); err != nil {
|
|
return
|
|
}
|
|
|
|
// Generate run folder
|
|
run_path := path.Join("/tmp", model.Id+"-defs-"+def.Id+"-split")
|
|
|
|
err = os.MkdirAll(run_path, os.ModePerm)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Create python script
|
|
f, err := os.Create(path.Join(run_path, "run.py"))
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer f.Close()
|
|
|
|
tmpl, err := template.New("python_split_model_template.py").ParseFiles("views/py/python_split_model_template.py")
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Copy result around
|
|
result_path := path.Join(getDir(), "savedData", model.Id, "defs", def.Id)
|
|
|
|
// TODO maybe move this to a select count(*)
|
|
// Get only fixed lawers
|
|
layers, err := c.Db.Query("select exp_type from model_definition_layer where def_id=$1 and exp_type=$2 order by layer_order asc;", def.Id, 1)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer layers.Close()
|
|
|
|
type layerrow struct {
|
|
ExpType int
|
|
}
|
|
|
|
count := -1
|
|
|
|
for layers.Next() {
|
|
count += 1
|
|
}
|
|
|
|
if count == -1 {
|
|
err = errors.New("Can not get layers")
|
|
return
|
|
}
|
|
|
|
log.Warn("Spliting model", "def", def.Id, "head", head.Id, "count", count)
|
|
|
|
basePath := path.Join(result_path, "base")
|
|
headPath := path.Join(result_path, "head", head.Id)
|
|
|
|
if err = os.MkdirAll(basePath, os.ModePerm); err != nil {
|
|
return
|
|
}
|
|
|
|
if err = os.MkdirAll(headPath, os.ModePerm); err != nil {
|
|
return
|
|
}
|
|
|
|
if err = tmpl.Execute(f, AnyMap{
|
|
"SplitLen": count,
|
|
"ModelPath": path.Join(result_path, "model.keras"),
|
|
"BaseModelPath": basePath,
|
|
"HeadModelPath": headPath,
|
|
}); err != nil {
|
|
return
|
|
}
|
|
|
|
out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).CombinedOutput()
|
|
if err != nil {
|
|
c.Logger.Debug(string(out))
|
|
return
|
|
}
|
|
|
|
os.RemoveAll(run_path)
|
|
c.Logger.Info("Python finished running")
|
|
return
|
|
}
|
|
|
|
func removeFailedDataPoints(c *Context, model *BaseModel) (err error) {
|
|
rows, err := c.Db.Query("select mdp.id from model_data_point as mdp join model_classes as mc on mc.id=mdp.class_id where mc.model_id=$1 and mdp.status=-1;", model.Id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
base_path := path.Join("savedData", model.Id, "data")
|
|
|
|
for rows.Next() {
|
|
var dataPointId string
|
|
err = rows.Scan(&dataPointId)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
p := path.Join(base_path, dataPointId+"."+model.Format)
|
|
|
|
c.Logger.Warn("Removing image", "path", p)
|
|
|
|
err = os.RemoveAll(p)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
_, err = c.Db.Exec("delete from model_data_point as mdp using model_classes as mc where mdp.class_id = mc.id and mc.model_id=$1 and mdp.status=-1;", model.Id)
|
|
return
|
|
}
|
|
|
|
// This generates a definition
|
|
func generateDefinition(c *Context, model *BaseModel, target_accuracy int, number_of_classes int, complexity int) *Error {
|
|
var err error = nil
|
|
failed := func() *Error {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
def_id, err := MakeDefenition(c.Db, model.Id, target_accuracy)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
order := 1
|
|
|
|
// Note the shape of the first layer defines the import size
|
|
if complexity == 2 {
|
|
// Note the shape for now is no used
|
|
width := int(math.Pow(2, math.Floor(math.Log(float64(model.Width))/math.Log(2.0))))
|
|
height := int(math.Pow(2, math.Floor(math.Log(float64(model.Height))/math.Log(2.0))))
|
|
c.Logger.Warn("Complexity 2 creating model with smaller size", "width", width, "height", height)
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_INPUT, fmt.Sprintf("%d,%d,1", width, height))
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
} else {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_INPUT, fmt.Sprintf("%d,%d,1", model.Width, model.Height))
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
}
|
|
|
|
if complexity == 0 {
|
|
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_FLATTEN, "")
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
|
|
loop := int(math.Log2(float64(number_of_classes)))
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
|
order++
|
|
if err != nil {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
}
|
|
|
|
} else if complexity == 1 || complexity == 2 {
|
|
|
|
loop := int((math.Log(float64(model.Width)) / math.Log(float64(10))))
|
|
if loop == 0 {
|
|
loop = 1
|
|
}
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_SIMPLE_BLOCK, "")
|
|
order++
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
}
|
|
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_FLATTEN, "")
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
|
|
loop = int((math.Log(float64(number_of_classes)) / math.Log(float64(10))) / 2)
|
|
if loop == 0 {
|
|
loop = 1
|
|
}
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
|
order++
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
}
|
|
} else {
|
|
c.Logger.Error("Unkown complexity", "complexity", complexity)
|
|
return failed()
|
|
}
|
|
|
|
err = ModelDefinitionUpdateStatus(c, def_id, MODEL_DEFINITION_STATUS_INIT)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func generateDefinitions(c *Context, model *BaseModel, target_accuracy int, number_of_models int) *Error {
|
|
cls, err := model_classes.ListClasses(c, model.Id)
|
|
if err != nil {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
err = removeFailedDataPoints(c, model)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
cls_len := len(cls)
|
|
|
|
if number_of_models == 1 {
|
|
if model.Width < 100 && model.Height < 100 && cls_len < 30 {
|
|
generateDefinition(c, model, target_accuracy, cls_len, 0)
|
|
} else if model.Width > 100 && model.Height > 100 {
|
|
generateDefinition(c, model, target_accuracy, cls_len, 2)
|
|
} else {
|
|
generateDefinition(c, model, target_accuracy, cls_len, 1)
|
|
}
|
|
} else if number_of_models == 3 {
|
|
for i := 0; i < number_of_models; i++ {
|
|
generateDefinition(c, model, target_accuracy, cls_len, i)
|
|
}
|
|
} else {
|
|
// TODO handle incrisea the complexity
|
|
for i := 0; i < number_of_models; i++ {
|
|
generateDefinition(c, model, target_accuracy, cls_len, 0)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func CreateExpModelHead(c *Context, def_id string, range_start int, range_end int, status ModelDefinitionStatus) (id string, err error) {
|
|
|
|
rows, err := c.Db.Query("insert into exp_model_head (def_id, range_start, range_end, status) values ($1, $2, $3, $4) returning id", def_id, range_start, range_end, status)
|
|
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
c.Logger.Error("Could not get status of model definition")
|
|
err = errors.New("Could not get status of model definition")
|
|
return
|
|
}
|
|
|
|
err = rows.Scan(&id)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func ExpModelHeadUpdateStatus(db *sql.DB, id string, status ModelDefinitionStatus) (err error) {
|
|
_, err = db.Exec("update model_definition set status = $1 where id = $2", status, id)
|
|
return
|
|
}
|
|
|
|
// This generates a definition
|
|
func generateExpandableDefinition(c *Context, model *BaseModel, target_accuracy int, number_of_classes int, complexity int) *Error {
|
|
c.Logger.Info("Generating expandable new definition for model", "id", model.Id, "complexity", complexity)
|
|
|
|
var err error = nil
|
|
failed := func() *Error {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
if complexity == 0 {
|
|
return failed()
|
|
}
|
|
|
|
def_id, err := MakeDefenition(c.Db, model.Id, target_accuracy)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
order := 1
|
|
|
|
width := model.Width
|
|
height := model.Height
|
|
|
|
// Note the shape of the first layer defines the import size
|
|
if complexity == 2 {
|
|
// Note the shape for now is no used
|
|
width := int(math.Pow(2, math.Floor(math.Log(float64(model.Width))/math.Log(2.0))))
|
|
height := int(math.Pow(2, math.Floor(math.Log(float64(model.Height))/math.Log(2.0))))
|
|
c.Logger.Warn("Complexity 2 creating model with smaller size", "width", width, "height", height)
|
|
|
|
}
|
|
|
|
err = MakeLayerExpandable(c.Db, def_id, order, LAYER_INPUT, fmt.Sprintf("%d,%d,1", width, height), 1)
|
|
|
|
order++
|
|
|
|
// handle the errors inside the pervious if block
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
// Create the blocks
|
|
loop := int((math.Log(float64(model.Width)) / math.Log(float64(10))))
|
|
|
|
if model.Width < 50 && model.Height < 50 {
|
|
loop = 0
|
|
}
|
|
|
|
log.Info("Size of the simple block", "loop", loop)
|
|
|
|
//loop = max(loop, 3)
|
|
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayerExpandable(c.Db, def_id, order, LAYER_SIMPLE_BLOCK, "", 1)
|
|
order++
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
}
|
|
|
|
// Flatten the blocks into dense
|
|
err = MakeLayerExpandable(c.Db, def_id, order, LAYER_FLATTEN, "", 1)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
|
|
// Flatten the blocks into dense
|
|
err = MakeLayerExpandable(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*2), 1)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
order++
|
|
|
|
loop = int((math.Log(float64(number_of_classes)) / math.Log(float64(10))) / 2)
|
|
|
|
log.Info("Size of the dense layers", "loop", loop)
|
|
|
|
// loop = max(loop, 3)
|
|
|
|
for i := 0; i < loop; i++ {
|
|
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
|
order++
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
}
|
|
|
|
_, err = CreateExpModelHead(c, def_id, 0, number_of_classes-1, MODEL_DEFINITION_STATUS_INIT)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
err = ModelDefinitionUpdateStatus(c, def_id, MODEL_DEFINITION_STATUS_INIT)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// TODO make this json friendy
|
|
func generateExpandableDefinitions(c *Context, model *BaseModel, target_accuracy int, number_of_models int) *Error {
|
|
cls, err := model_classes.ListClasses(c, model.Id)
|
|
if err != nil {
|
|
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
err = removeFailedDataPoints(c, model)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
cls_len := len(cls)
|
|
|
|
if number_of_models == 1 {
|
|
if model.Width > 100 && model.Height > 100 {
|
|
generateExpandableDefinition(c, model, target_accuracy, cls_len, 2)
|
|
} else {
|
|
generateExpandableDefinition(c, model, target_accuracy, cls_len, 1)
|
|
}
|
|
} else if number_of_models == 3 {
|
|
for i := 0; i < number_of_models; i++ {
|
|
generateExpandableDefinition(c, model, target_accuracy, cls_len, i)
|
|
}
|
|
} else {
|
|
// TODO handle incrisea the complexity
|
|
for i := 0; i < number_of_models; i++ {
|
|
generateExpandableDefinition(c, model, target_accuracy, cls_len, 1)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func ResetClasses(c *Context, model *BaseModel) {
|
|
_, err := c.Db.Exec("update model_classes set status=$1 where status=$2 and model_id=$3", MODEL_CLASS_STATUS_TO_TRAIN, MODEL_CLASS_STATUS_TRAINING, model.Id)
|
|
if err != nil {
|
|
c.Logger.Error("Error while reseting the classes", "error", err)
|
|
}
|
|
}
|
|
|
|
func trainExpandable(c *Context, model *BaseModel) {
|
|
var err error = nil
|
|
|
|
failed := func(msg string) {
|
|
c.Logger.Error(msg, "err", err)
|
|
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
|
ResetClasses(c, model)
|
|
}
|
|
|
|
var definitions TrainModelRowUsables
|
|
|
|
definitions, err = GetDbMultitple[TrainModelRowUsable](c, "model_definition where status=$1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id)
|
|
if err != nil {
|
|
failed("Failed to get definitions")
|
|
return
|
|
}
|
|
if len(definitions) != 1 {
|
|
failed("There should only be one definition available!")
|
|
return
|
|
}
|
|
|
|
firstRound := true
|
|
def := definitions[0]
|
|
epoch := 0
|
|
|
|
for {
|
|
acc, err := trainDefinitionExp(c, model, def.Id, !firstRound)
|
|
if err != nil {
|
|
failed("Failed to train definition!")
|
|
return
|
|
}
|
|
epoch += EPOCH_PER_RUN
|
|
|
|
if float64(acc*100) >= float64(def.Acuracy) {
|
|
c.Logger.Info("Found a definition that reaches target_accuracy!")
|
|
|
|
_, err = c.Db.Exec("update exp_model_head set status=$1 where def_id=$2 and status=$3;", MODEL_HEAD_STATUS_READY, def.Id, MODEL_HEAD_STATUS_TRAINING)
|
|
if err != nil {
|
|
failed("Failed to train definition!")
|
|
return
|
|
}
|
|
break
|
|
} else if def.Epoch > MAX_EPOCH {
|
|
failed(fmt.Sprintf("Failed to train definition! Accuracy less %f < %d\n", acc*100, def.TargetAccuracy))
|
|
return
|
|
}
|
|
}
|
|
|
|
// Set the class status to trained
|
|
err = setModelClassStatus(c, MODEL_CLASS_STATUS_TRAINED, "model_id=$1 and status=$2;", model.Id, MODEL_CLASS_STATUS_TRAINING)
|
|
if err != nil {
|
|
failed("Failed to set class status")
|
|
return
|
|
}
|
|
|
|
ModelUpdateStatus(c, model.Id, READY)
|
|
}
|
|
|
|
func trainRetrain(c *Context, model *BaseModel, defId string) {
|
|
var err error
|
|
|
|
failed := func() {
|
|
ResetClasses(c, model)
|
|
ModelUpdateStatus(c, model.Id, READY_RETRAIN_FAILED)
|
|
c.Logger.Error("Failed to retrain", "err", err)
|
|
return
|
|
}
|
|
|
|
// This is something I have to check
|
|
acc, err := trainDefinitionExpandExp(c, model, defId, false)
|
|
if err != nil {
|
|
c.Logger.Error("Failed to retrain the model", "err", err)
|
|
failed()
|
|
return
|
|
|
|
}
|
|
c.Logger.Info("Retrained model", "accuracy", acc)
|
|
|
|
// TODO check accuracy
|
|
|
|
err = UpdateStatus(c, "models", model.Id, READY)
|
|
if err != nil {
|
|
failed()
|
|
return
|
|
}
|
|
|
|
c.Logger.Info("model updaded")
|
|
|
|
_, err = c.Db.Exec("update model_classes set status=$1 where status=$2 and model_id=$3", MODEL_CLASS_STATUS_TRAINED, MODEL_CLASS_STATUS_TRAINING, model.Id)
|
|
if err != nil {
|
|
c.Logger.Error("Error while updating the classes", "error", err)
|
|
failed()
|
|
return
|
|
}
|
|
}
|
|
|
|
func handleRetrain(c *Context) *Error {
|
|
var err error = nil
|
|
if !c.CheckAuthLevel(1) {
|
|
return nil
|
|
}
|
|
|
|
var dat JustId
|
|
|
|
if err_ := c.ToJSON(&dat); err_ != nil {
|
|
return err_
|
|
}
|
|
|
|
if dat.Id == "" {
|
|
return c.JsonBadRequest("Please provide a id")
|
|
}
|
|
|
|
model, err := GetBaseModel(c.Db, dat.Id)
|
|
if err == ModelNotFoundError {
|
|
return c.JsonBadRequest("Model not found")
|
|
} else if err != nil {
|
|
return c.Error500(err)
|
|
} else if model.Status != READY && model.Status != READY_RETRAIN_FAILED && model.Status != READY_ALTERATION_FAILED {
|
|
return c.JsonBadRequest("Model in invalid status for re-training")
|
|
}
|
|
|
|
c.Logger.Info("Expanding definitions for models", "id", model.Id)
|
|
|
|
classesUpdated := false
|
|
|
|
failed := func() *Error {
|
|
if classesUpdated {
|
|
ResetClasses(c, model)
|
|
}
|
|
|
|
ModelUpdateStatus(c, model.Id, READY_RETRAIN_FAILED)
|
|
c.Logger.Error("Failed to retrain", "err", err)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
var def struct {
|
|
Id string
|
|
TargetAccuracy int `db:"target_accuracy"`
|
|
}
|
|
|
|
err = GetDBOnce(c, &def, "model_definition where model_id=$1;", model.Id)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
type C struct {
|
|
Id string
|
|
ClassOrder int `db:"class_order"`
|
|
}
|
|
|
|
err = c.StartTx()
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
classes, err := GetDbMultitple[C](
|
|
c,
|
|
"model_classes where model_id=$1 and status=$2 order by class_order asc",
|
|
model.Id,
|
|
MODEL_CLASS_STATUS_TO_TRAIN,
|
|
)
|
|
if err != nil {
|
|
_err := c.RollbackTx()
|
|
if _err != nil {
|
|
c.Logger.Error("Two errors happended rollback failed", "err", _err)
|
|
}
|
|
return failed()
|
|
}
|
|
|
|
if len(classes) == 0 {
|
|
c.Logger.Error("No classes are available!")
|
|
_err := c.RollbackTx()
|
|
if _err != nil {
|
|
c.Logger.Error("Two errors happended rollback failed", "err", _err)
|
|
}
|
|
return failed()
|
|
}
|
|
|
|
//Update the classes
|
|
{
|
|
stmt, err2 := c.Prepare("update model_classes set status=$1 where status=$2 and model_id=$3")
|
|
err = err2
|
|
if err != nil {
|
|
_err := c.RollbackTx()
|
|
if _err != nil {
|
|
c.Logger.Error("Two errors happended rollback failed", "err", _err)
|
|
}
|
|
return failed()
|
|
}
|
|
defer stmt.Close()
|
|
|
|
_, err = stmt.Exec(MODEL_CLASS_STATUS_TRAINING, MODEL_CLASS_STATUS_TO_TRAIN, model.Id)
|
|
if err != nil {
|
|
_err := c.RollbackTx()
|
|
if _err != nil {
|
|
c.Logger.Error("Two errors happended rollback failed", "err", _err)
|
|
}
|
|
return failed()
|
|
}
|
|
|
|
err = c.CommitTx()
|
|
if err != nil {
|
|
_err := c.RollbackTx()
|
|
if _err != nil {
|
|
c.Logger.Error("Two errors happended rollback failed", "err", _err)
|
|
}
|
|
return failed()
|
|
}
|
|
|
|
classesUpdated = true
|
|
}
|
|
|
|
_, err = CreateExpModelHead(c, def.Id, classes[0].ClassOrder, classes[len(classes)-1].ClassOrder, MODEL_DEFINITION_STATUS_INIT)
|
|
if err != nil {
|
|
return failed()
|
|
}
|
|
|
|
go trainRetrain(c, model, def.Id)
|
|
|
|
_, err = c.Db.Exec("update models set status=$1 where id=$2;", READY_RETRAIN, model.Id)
|
|
if err != nil {
|
|
fmt.Println("Failed to update model status")
|
|
fmt.Println(err)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
return c.SendJSON(model.Id)
|
|
}
|
|
|
|
func handleTrain(handle *Handle) {
|
|
handle.Post("/models/train", func(c *Context) *Error {
|
|
if !c.CheckAuthLevel(1) {
|
|
return nil
|
|
}
|
|
|
|
var dat struct {
|
|
Id string `json:"id"`
|
|
ModelType string `json:"model_type"`
|
|
NumberOfModels int `json:"number_of_models"`
|
|
Accuracy int `json:"accuracy"`
|
|
}
|
|
|
|
if err_ := c.ToJSON(&dat); err_ != nil {
|
|
return err_
|
|
}
|
|
|
|
if dat.Id == "" {
|
|
return c.JsonBadRequest("Please provide a id")
|
|
}
|
|
|
|
modelTypeId := 1
|
|
if dat.ModelType == "expandable" {
|
|
modelTypeId = 2
|
|
} else if dat.ModelType != "simple" {
|
|
return c.JsonBadRequest("Invalid model type!")
|
|
}
|
|
|
|
model, err := GetBaseModel(c.Db, dat.Id)
|
|
if err == ModelNotFoundError {
|
|
return c.JsonBadRequest("Model not found")
|
|
} else if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
if model.Status != CONFIRM_PRE_TRAINING {
|
|
return c.JsonBadRequest("Model in invalid status for training")
|
|
}
|
|
|
|
if modelTypeId == 2 {
|
|
full_error := generateExpandableDefinitions(c, model, dat.Accuracy, dat.NumberOfModels)
|
|
if full_error != nil {
|
|
return full_error
|
|
}
|
|
} else {
|
|
full_error := generateDefinitions(c, model, dat.Accuracy, dat.NumberOfModels)
|
|
if full_error != nil {
|
|
return full_error
|
|
}
|
|
}
|
|
|
|
if modelTypeId == 2 {
|
|
go trainModelExp(c, model)
|
|
} else {
|
|
go trainModel(c, model)
|
|
}
|
|
|
|
_, err = c.Db.Exec("update models set status = $1, model_type = $2 where id = $3", TRAINING, modelTypeId, model.Id)
|
|
if err != nil {
|
|
fmt.Println("Failed to update model status")
|
|
fmt.Println(err)
|
|
// TODO improve this response
|
|
return c.Error500(err)
|
|
}
|
|
|
|
return c.SendJSON(model.Id)
|
|
})
|
|
|
|
handle.Post("/model/train/retrain", handleRetrain)
|
|
|
|
handle.Get("/model/epoch/update", func(c *Context) *Error {
|
|
f := c.R.URL.Query()
|
|
|
|
accuracy := 0.0
|
|
|
|
if !CheckId(f, "model_id") || !CheckId(f, "definition") || CheckEmpty(f, "epoch") || !CheckFloat64(f, "accuracy", &accuracy) {
|
|
return c.JsonBadRequest("Invalid: model_id or definition or epoch or accuracy")
|
|
}
|
|
|
|
accuracy = accuracy * 100
|
|
|
|
model_id := f.Get("model_id")
|
|
def_id := f.Get("definition")
|
|
epoch, err := strconv.Atoi(f.Get("epoch"))
|
|
if err != nil {
|
|
return c.JsonBadRequest("Epoch is not a number")
|
|
}
|
|
|
|
rows, err := c.Db.Query("select md.status from model_definition as md where md.model_id=$1 and md.id=$2", model_id, def_id)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
c.Logger.Error("Could not get status of model definition")
|
|
return c.Error500(nil)
|
|
}
|
|
|
|
var status int
|
|
err = rows.Scan(&status)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
if status != 3 {
|
|
c.Logger.Warn("Definition not on status 3(training)", "status", status)
|
|
return c.JsonBadRequest("Definition not on status 3(training)")
|
|
}
|
|
|
|
c.Logger.Debug("Updated model_definition!", "model", model_id, "progress", epoch, "accuracy", accuracy)
|
|
|
|
_, err = c.Db.Exec("update model_definition set epoch_progress=$1, accuracy=$2 where id=$3", epoch, accuracy, def_id)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
c.ShowMessage = false
|
|
return nil
|
|
})
|
|
|
|
handle.Get("/model/head/epoch/update", func(c *Context) *Error {
|
|
f := c.R.URL.Query()
|
|
|
|
accuracy := 0.0
|
|
|
|
if !CheckId(f, "head_id") || CheckEmpty(f, "epoch") || !CheckFloat64(f, "accuracy", &accuracy) {
|
|
return c.JsonBadRequest("Invalid: model_id or definition or epoch or accuracy")
|
|
}
|
|
|
|
accuracy = accuracy * 100
|
|
|
|
head_id := f.Get("head_id")
|
|
epoch, err := strconv.Atoi(f.Get("epoch"))
|
|
if err != nil {
|
|
return c.JsonBadRequest("Epoch is not a number")
|
|
}
|
|
|
|
rows, err := c.Db.Query("select hd.status from exp_model_head as hd where hd.id=$1;", head_id)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
defer rows.Close()
|
|
|
|
if !rows.Next() {
|
|
c.Logger.Error("Could not get status of model head")
|
|
return c.Error500(nil)
|
|
}
|
|
|
|
var status int
|
|
err = rows.Scan(&status)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
if status != 3 {
|
|
c.Logger.Warn("Head not on status 3(training)", "status", status)
|
|
return c.JsonBadRequest("Head not on status 3(training)")
|
|
}
|
|
|
|
c.Logger.Debug("Updated model_head!", "head", head_id, "progress", epoch, "accuracy", accuracy)
|
|
|
|
_, err = c.Db.Exec("update exp_model_head set epoch_progress=$1, accuracy=$2 where id=$3", epoch, accuracy, head_id)
|
|
if err != nil {
|
|
return c.Error500(err)
|
|
}
|
|
|
|
c.ShowMessage = false
|
|
return nil
|
|
})
|
|
}
|