fyp/test.go

121 lines
2.4 KiB
Go

package main
import (
"git.andr3h3nriqu3s.com/andr3/gotch"
dbtypes "git.andr3h3nriqu3s.com/andr3/fyp/logic/db_types"
"git.andr3h3nriqu3s.com/andr3/fyp/logic/models/train/torch"
//my_nn "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/train/torch/nn"
torch "git.andr3h3nriqu3s.com/andr3/gotch/ts"
"github.com/charmbracelet/log"
)
func main() {
log.Info("Hello world")
m := train.BuildModel([]*dbtypes.Layer{
&dbtypes.Layer{
LayerType: dbtypes.LAYER_INPUT,
Shape: "[ 3, 28, 28 ]",
},
&dbtypes.Layer{
LayerType: dbtypes.LAYER_FLATTEN,
},
&dbtypes.Layer{
LayerType: dbtypes.LAYER_DENSE,
Shape: "[ 27 ]",
},
&dbtypes.Layer{
LayerType: dbtypes.LAYER_DENSE,
Shape: "[ 18 ]",
},
// &dbtypes.Layer{
// LayerType: dbtypes.LAYER_DENSE,
// Shape: "[ 9 ]",
// },
}, 0, true)
//var err error
d := gotch.CudaIfAvailable()
log.Info("device", "d", d)
m.To(d)
var count = 0
// vars1 := m.Vs.Variables()
//
// for k, v := range vars1 {
// ones := torch.MustOnes(v.MustSize(), gotch.Float, d)
// v := ones.MustSetRequiresGrad(true, false)
// v.MustDrop()
// ones.RetainGrad(false)
//
// m.Vs.UpdateVarTensor(k, ones, true)
// m.Refresh()
// }
//
// opt, err := my_nn.DefaultAdamConfig().Build(m.Vs, 0.001)
// if err != nil {
// return
// }
log.Info("start")
for count < 100 {
ones := torch.MustOnes([]int64{1, 3, 28, 28}, gotch.Float, d)
// ones = ones.MustSetRequiresGrad(true, true)
// ones.RetainGrad(false)
res := m.ForwardT(ones, true)
//res = res.MustSetRequiresGrad(true, true)
//res.RetainGrad(false)
outs := torch.MustZeros([]int64{1, 18}, gotch.Float, d)
loss, err := res.BinaryCrossEntropyWithLogits(outs, &torch.Tensor{}, &torch.Tensor{}, 2, false)
if err != nil {
log.Fatal(err)
}
// loss = loss.MustSetRequiresGrad(true, true)
//opt.ZeroGrad()
log.Info("loss", "loss", loss.Float64Values())
loss.MustBackward()
//opt.Step()
// log.Info(mean.MustGrad(false).Float64Values())
//ones_grad = ones.MustGrad(true).MustMax(true).Float64Values()[0]
// log.Info(res.MustGrad(true).MustMax(true).Float64Values())
// log.Info(ones_grad)
vars := m.Vs.Variables()
for k, v := range vars {
log.Info("[grad check]", "k", k, "grad", v.MustGrad(false).MustMax(true).Float64Values())
}
m.Debug()
outs.MustDrop()
count += 1
log.Fatal("grad zero")
}
log.Warn("out")
}