import tensorflow as tf import random from tensorflow import keras from keras import layers, losses, optimizers seed = random.randint(0, 100000000) batch_size = 100 dataset = keras.utils.image_dataset_from_directory( "{{ .DataDir }}", color_mode="rgb", validation_split=0.2, label_mode='int', seed=seed, subset="training", image_size=({{ .Size }}), batch_size=batch_size) dataset_validation = keras.utils.image_dataset_from_directory( "{{ .DataDir }}", color_mode="rgb", validation_split=0.2, label_mode='int', seed=seed, subset="validation", image_size=({{ .Size }}), batch_size=batch_size) model = keras.Sequential([ {{- range .Layers }} {{- if eq .LayerType 1}} layers.Rescaling(1./255), {{- else if eq .LayerType 2 }} layers.Dense({{ .Shape }}, activation="sigmoid"), {{- else if eq .LayerType 3}} layers.Flatten(), {{- else }} ERROR {{- end }} {{- end }} ]) model.compile( loss=losses.SparseCategoricalCrossentropy(), optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) his = model.fit(dataset, validation_data= dataset_validation, epochs=70) acc = his.history["accuracy"] f = open("accuracy.val", "w") f.write(str(acc[-1])) f.close() tf.saved_model.save(model, "model") # model.save("model.keras", save_format="tf")