runner-go #102

Merged
andr3 merged 9 commits from runner-go into main 2024-05-10 02:13:02 +01:00
7 changed files with 140 additions and 47 deletions
Showing only changes of commit b1e4211e6a - Show all commits

View File

@ -1280,6 +1280,15 @@ func generateDefinition(c BasePack, model *BaseModel, target_accuracy int, numbe
order++
if complexity == 0 {
/*
_, err = def.MakeLayer(db, order, LAYER_SIMPLE_BLOCK, "")
if err != nil {
failed()
return
}
order++
*/
_, err = def.MakeLayer(db, order, LAYER_FLATTEN, "")
if err != nil {
failed()

1
runner/Cargo.lock generated
View File

@ -1014,6 +1014,7 @@ name = "runner"
version = "0.1.0"
dependencies = [
"anyhow",
"rand",
"reqwest",
"serde",
"serde_json",

View File

@ -14,3 +14,4 @@ tokio = { version = "1", features = ["full"] }
serde_json = "1.0.116"
serde_repr = "0.1"
tch = { version = "0.16.0", features = ["download-libtorch"] }
rand = "0.8.5"

View File

@ -10,6 +10,31 @@ pub struct DataLoader {
pub pos: usize,
}
fn import_image(
item: &DataPoint,
base_path: &Path,
classes_len: i64,
inputs: &mut Vec<Tensor>,
labels: &mut Vec<Tensor>,
) {
inputs.push(
tch::vision::image::load(base_path.join(&item.path))
.ok()
.unwrap()
.unsqueeze(0),
);
if item.class >= 0 {
let t = tch::Tensor::from_slice(&[item.class]).onehot(classes_len as i64);
labels.push(t);
} else {
labels.push(tch::Tensor::zeros(
[1, classes_len as i64],
(tch::Kind::Float, tch::Device::Cpu),
))
}
}
impl DataLoader {
pub fn new(
config: Arc<ConfigFile>,
@ -21,6 +46,14 @@ impl DataLoader {
let min_len: i64 = len.floor() as i64;
let max_len: i64 = len.ceil() as i64;
println!(
"Creating dataloader data len: {} len: {} min_len: {} max_len:{}",
data.len(),
len,
min_len,
max_len
);
let base_path = Path::new(&config.data_path);
let mut inputs: Vec<Tensor> = Vec::new();
@ -32,53 +65,27 @@ impl DataLoader {
for image in 0..batch_size {
let i: usize = (batch * batch_size + image).try_into().unwrap();
let item = &data[i];
batch_acc.push(
tch::vision::image::load(base_path.join(&item.path))
.ok()
.unwrap(),
);
if item.class >= 0 {
let t = tch::Tensor::from_slice(&[item.class])
.onehot(classes_len.try_into().unwrap());
labels.push(t);
} else {
labels.push(tch::Tensor::zeros(
(classes_len),
(tch::Kind::Float, tch::Device::Cpu),
))
}
import_image(item, base_path, classes_len, &mut batch_acc, &mut labels)
}
inputs.push(tch::Tensor::cat(&batch_acc[0..], 0));
all_labels.push(tch::Tensor::cat(&labels[0..], 0));
}
// Import the last batch that has irregular sizing
if min_len != max_len {
let mut batch_acc: Vec<Tensor> = Vec::new();
let mut labels: Vec<Tensor> = Vec::new();
for image in 0..(data.len() - (batch_size * min_len) as usize) {
let i: usize = (min_len * batch_size + (image as i64)) as usize;
let item = &data[i];
batch_acc.push(
tch::vision::image::load(base_path.join(&item.path))
.ok()
.unwrap(),
);
if item.class >= 0 {
let t = tch::Tensor::from_slice(&[item.class]).onehot(classes_len);
labels.push(t);
} else {
labels.push(tch::Tensor::zeros(
classes_len,
(tch::Kind::Float, tch::Device::Cpu),
))
}
import_image(item, base_path, classes_len, &mut batch_acc, &mut labels);
}
inputs.push(tch::Tensor::cat(&batch_acc[0..], 0));
all_labels.push(tch::Tensor::cat(&labels[0..], 0));
}
println!("ins shape: {:?}", inputs[0].size());
return DataLoader {
batch_size,
inputs,
@ -101,6 +108,8 @@ impl DataLoader {
let label = self.labels[self.pos].empty_like();
self.labels[self.pos] = self.labels[self.pos].clone(&label);
self.pos += 1;
return Some((input, label));
}
}

View File

@ -39,7 +39,7 @@ pub struct DataPoint {
}
pub fn build_model(layers: Vec<Layer>, last_linear_size: i64, add_sigmoid: bool) -> Model {
let vs = nn::VarStore::new(Device::Cpu);
let vs = nn::VarStore::new(Device::Cuda(0));
let mut seq = nn::seq();
@ -77,14 +77,32 @@ pub fn build_model(layers: Vec<Layer>, last_linear_size: i64, add_sigmoid: bool)
)
}
LayerType::SimpleBlock => {
panic!("DO not create Simple blocks yet");
let new_last_linear_conv =
vec![128, last_linear_conv[1] / 2, last_linear_conv[2] / 2];
println!(
"Layer: block, In: {:?}, Put: {:?}",
last_linear_conv, new_last_linear_conv,
);
//TODO
let out_size = vec![new_last_linear_conv[1], new_last_linear_conv[2]];
seq = seq
.add(nn::conv2d(
&vs.root(),
last_linear_conv[0],
128,
3,
nn::ConvConfig::default(),
))
.add_fn(|xs| xs.relu())
.add(nn::conv2d(
&vs.root(),
128,
128,
3,
nn::ConvConfig::default(),
))
.add_fn(|xs| xs.relu())
.add_fn(move |xs| xs.adaptive_avg_pool2d([out_size[1], out_size[1]]))
.add_fn(|xs| xs.leaky_relu());
//m_layers = append(m_layers, NewSimpleBlock(vs, lastLinearConv[0]))
last_linear_conv = new_last_linear_conv;
}

View File

@ -50,7 +50,7 @@ pub async fn fail_task(
runner_data: Arc<RunnerData>,
reason: &str,
) -> Result<()> {
println!("Marking Task as faield");
println!("Marking Task as failed");
let client = reqwest::Client::new();

View File

@ -5,13 +5,17 @@ use crate::{
tasks::{fail_task, Task},
types::{DataPointRequest, Definition, ModelClass},
};
use std::sync::Arc;
use std::{
io::{self, Write},
sync::Arc,
};
use anyhow::Result;
use rand::{seq::SliceRandom, thread_rng};
use serde_json::json;
use tch::{
nn::{self, Module, OptimizerConfig},
Tensor,
Cuda, Tensor,
};
pub async fn handle_train(
@ -36,6 +40,12 @@ pub async fn handle_train(
.json()
.await?;
if defs.len() == 0 {
println!("No defs found");
fail_task(task, config, runner_data, "No definitions found").await?;
return Ok(());
}
let classes: Vec<ModelClass> = client
.post(format!("{}/tasks/runner/train/classes", config.hostname))
.header("token", &config.token)
@ -54,7 +64,11 @@ pub async fn handle_train(
.json()
.await?;
let mut data_loader = DataLoader::new(config.clone(), data.testing, classes.len() as i64, 64);
let mut testing = data.testing;
testing.shuffle(&mut thread_rng());
let mut data_loader = DataLoader::new(config.clone(), testing, classes.len() as i64, 64);
// TODO make this a vec
let mut model: Option<model::Model> = None;
@ -294,30 +308,71 @@ async fn train_definition(
build_model(layers, 0, true)
});
println!("here1!");
// TODO CUDA
// get device
// Move model to cuda
let mut opt = nn::Adam::default().build(&model.vs, 1e-5)?;
let mut opt = nn::Adam::default().build(&model.vs, 1e-3)?;
println!("here2!");
let mut last_acc = 0.0;
for epoch in 1..20 {
for epoch in 1..40 {
data_loader.restart();
let mut mean_loss: f64 = 0.0;
let mut mean_acc: f64 = 0.0;
while let Some((inputs, labels)) = data_loader.next() {
let inputs = inputs.to_kind(tch::Kind::Float);
let labels = labels.to_kind(tch::Kind::Float);
println!("ins: {:?} labels: {:?}", inputs.size(), labels.size());
let inputs = inputs
.to_kind(tch::Kind::Float)
.to_device(tch::Device::Cuda(0));
let labels = labels
.to_kind(tch::Kind::Float)
.to_device(tch::Device::Cuda(0));
let out = model.seq.forward(&inputs);
let weight: Option<Tensor> = None;
let loss = out.binary_cross_entropy(&labels, weight, tch::Reduction::Mean);
opt.backward_step(&loss);
println!("out: {:?}", out);
mean_loss += loss
.to_device(tch::Device::Cpu)
.unsqueeze(0)
.double_value(&[0]);
let out = out.to_device(tch::Device::Cpu);
let test = out.empty_like();
_ = out.clone(&test);
let out = test.argmax(1, true);
let mut labels = labels.to_device(tch::Device::Cpu);
labels = labels.unsqueeze(-1);
let size = out.size()[0];
let mut acc = 0;
for i in 0..size {
let res = out.double_value(&[i]);
let exp = labels.double_value(&[i, res as i64]);
if exp == 1.0 {
acc += 1;
}
}
mean_acc += acc as f64 / size as f64;
last_acc = acc as f64 / size as f64;
}
print!(
"\repoch: {} loss: {} acc: {} l acc: {} ",
epoch,
mean_loss / data_loader.len as f64,
mean_acc / data_loader.len as f64,
last_acc
);
io::stdout().flush().expect("Unable to flush stdout");
}
println!("\nlast acc: {}", last_acc);
return Ok(Some(model));
/*