parent
90bc3f6acf
commit
c844aeabe4
@ -14,7 +14,7 @@ tmp_dir = "tmp"
|
||||
follow_symlink = false
|
||||
full_bin = ""
|
||||
include_dir = []
|
||||
include_ext = ["go", "tpl", "tmpl", "html"]
|
||||
include_ext = ["go", "tpl", "tmpl"] # , "html"
|
||||
include_file = []
|
||||
kill_delay = "0s"
|
||||
log = "build-errors.log"
|
||||
|
@ -2,7 +2,6 @@ package models
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"image"
|
||||
"image/color"
|
||||
_ "image/jpeg"
|
||||
@ -38,8 +37,8 @@ func loadBaseImage(c *Context, id string) {
|
||||
case "png":
|
||||
case "jpeg":
|
||||
default:
|
||||
// TODO better logging
|
||||
fmt.Printf("Found unkown format '%s'\n", format)
|
||||
ModelUpdateStatus(c, id, FAILED_PREPARING)
|
||||
c.Logger.Error("Found unkown format '%s'\n", "format", format)
|
||||
panic("Handle diferent files than .png")
|
||||
}
|
||||
|
||||
@ -53,24 +52,26 @@ func loadBaseImage(c *Context, id string) {
|
||||
fallthrough
|
||||
case color.GrayModel:
|
||||
model_color = "greyscale"
|
||||
case color.NRGBAModel:
|
||||
fallthrough
|
||||
case color.YCbCrModel:
|
||||
model_color = "rgb"
|
||||
default:
|
||||
fmt.Println("Do not know how to handle this color model")
|
||||
c.Logger.Error("Do not know how to handle this color model")
|
||||
|
||||
if src.ColorModel() == color.RGBA64Model {
|
||||
fmt.Println("Color is rgb")
|
||||
} else if src.ColorModel() == color.NRGBAModel {
|
||||
fmt.Println("Color is nrgb")
|
||||
c.Logger.Error("Color is rgb")
|
||||
} else if src.ColorModel() == color.NRGBA64Model {
|
||||
c.Logger.Error("Color is nrgb 64")
|
||||
} else if src.ColorModel() == color.AlphaModel {
|
||||
fmt.Println("Color is alpha")
|
||||
c.Logger.Error("Color is alpha")
|
||||
} else if src.ColorModel() == color.CMYKModel {
|
||||
fmt.Println("Color is cmyk")
|
||||
c.Logger.Error("Color is cmyk")
|
||||
} else {
|
||||
fmt.Println("Other so assuming color")
|
||||
c.Logger.Error("Other so assuming color")
|
||||
}
|
||||
|
||||
ModelUpdateStatus(c, id, -1)
|
||||
ModelUpdateStatus(c, id, FAILED_PREPARING)
|
||||
return
|
||||
}
|
||||
|
||||
@ -130,7 +131,7 @@ func handleAdd(handle *Handle) {
|
||||
|
||||
row, err := handle.Db.Query("select id from models where name=$1 and user_id=$2;", name, c.User.Id)
|
||||
if err != nil {
|
||||
return Error500(err)
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
if row.Next() {
|
||||
@ -143,12 +144,12 @@ func handleAdd(handle *Handle) {
|
||||
|
||||
_, err = handle.Db.Exec("insert into models (user_id, name) values ($1, $2)", c.User.Id, name)
|
||||
if err != nil {
|
||||
return Error500(err)
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
row, err = handle.Db.Query("select id from models where name=$1 and user_id=$2;", name, c.User.Id)
|
||||
if err != nil {
|
||||
return Error500(err)
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
if !row.Next() {
|
||||
@ -158,7 +159,7 @@ func handleAdd(handle *Handle) {
|
||||
var id string
|
||||
err = row.Scan(&id)
|
||||
if err != nil {
|
||||
return Error500(err)
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
// TODO mk this path configurable
|
||||
@ -166,17 +167,17 @@ func handleAdd(handle *Handle) {
|
||||
|
||||
err = os.Mkdir(dir_path, os.ModePerm)
|
||||
if err != nil {
|
||||
return Error500(err)
|
||||
return c.Error500(err)
|
||||
}
|
||||
f, err := os.Create(path.Join(dir_path, "baseimage.png"))
|
||||
if err != nil {
|
||||
return Error500(err)
|
||||
return c.Error500(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
f.Write(file)
|
||||
|
||||
fmt.Printf("Created model with id %s! Started to proccess image!\n", id)
|
||||
c.Logger.Warn("Created model with id %s! Started to proccess image!\n", "id", id)
|
||||
go loadBaseImage(c, id)
|
||||
|
||||
Redirect("/models/edit?id="+id, c.Mode, w, r)
|
||||
|
@ -32,9 +32,12 @@ func testImgForModel(c *Context, model *BaseModel, path string) (result bool) {
|
||||
width, height := bounds.Max.X, bounds.Max.Y
|
||||
|
||||
switch src.ColorModel() {
|
||||
case color.Gray16Model: fallthrough
|
||||
case color.Gray16Model:
|
||||
fallthrough
|
||||
case color.GrayModel:
|
||||
model_color = "greyscale"
|
||||
case color.NRGBAModel:
|
||||
fallthrough
|
||||
case color.YCbCrModel:
|
||||
model_color = "rgb"
|
||||
default:
|
||||
@ -42,8 +45,8 @@ func testImgForModel(c *Context, model *BaseModel, path string) (result bool) {
|
||||
|
||||
if src.ColorModel() == color.RGBA64Model {
|
||||
c.Logger.Info("Color is rgb")
|
||||
} else if src.ColorModel() == color.NRGBAModel {
|
||||
c.Logger.Info("Color is nrgb")
|
||||
} else if src.ColorModel() == color.NRGBA64Model {
|
||||
c.Logger.Info("Color is nrgb 64")
|
||||
} else if src.ColorModel() == color.AlphaModel {
|
||||
c.Logger.Info("Color is alpha")
|
||||
} else if src.ColorModel() == color.CMYKModel {
|
||||
@ -54,7 +57,7 @@ func testImgForModel(c *Context, model *BaseModel, path string) (result bool) {
|
||||
return
|
||||
}
|
||||
|
||||
if (StringToImageMode(model_color) != model.ImageMode) {
|
||||
if StringToImageMode(model_color) != model.ImageMode {
|
||||
c.Logger.Warn("Color Mode does not match with model color mode", model_color, model.ImageMode)
|
||||
return
|
||||
}
|
||||
|
@ -10,6 +10,7 @@ import (
|
||||
"os"
|
||||
"os/exec"
|
||||
"path"
|
||||
"sort"
|
||||
"strconv"
|
||||
"text/template"
|
||||
|
||||
@ -43,6 +44,7 @@ const (
|
||||
MODEL_DEFINITION_STATUS_PRE_INIT ModelDefinitionStatus = 1
|
||||
MODEL_DEFINITION_STATUS_INIT = 2
|
||||
MODEL_DEFINITION_STATUS_TRAINING = 3
|
||||
MODEL_DEFINITION_STATUS_PAUSED_TRAINING = 6
|
||||
MODEL_DEFINITION_STATUS_TRANIED = 4
|
||||
MODEL_DEFINITION_STATUS_READY = 5
|
||||
)
|
||||
@ -142,6 +144,7 @@ func trainDefinition(c *Context, model *BaseModel, definition_id string, load_pr
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
defer os.RemoveAll(run_path)
|
||||
|
||||
_, err = generateCvs(c, run_path, model.Id)
|
||||
if err != nil {
|
||||
@ -174,29 +177,24 @@ func trainDefinition(c *Context, model *BaseModel, definition_id string, load_pr
|
||||
"DefId": definition_id,
|
||||
"LoadPrev": load_prev,
|
||||
"LastModelRunPath": path.Join(getDir(), result_path, "model.keras"),
|
||||
"SaveModelPath": path.Join(getDir(), result_path),
|
||||
}); err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
// Run the command
|
||||
out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).Output()
|
||||
out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).CombinedOutput()
|
||||
if err != nil {
|
||||
c.Logger.Debug(string(out))
|
||||
return
|
||||
}
|
||||
|
||||
c.Logger.Info("Python finished running")
|
||||
|
||||
if err = os.MkdirAll(result_path, os.ModePerm); err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
if err = exec.Command("cp", "-r", path.Join(run_path, "model"), path.Join(result_path, "model")).Run(); err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
if err = exec.Command("cp", "-r", path.Join(run_path, "model.keras"), path.Join(result_path, "model.keras")).Run(); err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
accuracy_file, err := os.Open(path.Join(run_path, "accuracy.val"))
|
||||
if err != nil {
|
||||
return
|
||||
@ -214,8 +212,6 @@ func trainDefinition(c *Context, model *BaseModel, definition_id string, load_pr
|
||||
}
|
||||
|
||||
c.Logger.Info("Model finished training!", "accuracy", accuracy)
|
||||
|
||||
os.RemoveAll(run_path)
|
||||
return
|
||||
}
|
||||
|
||||
@ -236,6 +232,29 @@ func remove[T interface{}](lst []T, i int) []T {
|
||||
return append(lst[:i], lst[i+1:]...)
|
||||
}
|
||||
|
||||
type TrainModelRow struct {
|
||||
id string
|
||||
target_accuracy int
|
||||
epoch int
|
||||
acuracy float64
|
||||
}
|
||||
|
||||
type TraingModelRowDefinitions []TrainModelRow
|
||||
|
||||
func (nf TraingModelRowDefinitions) Len() int { return len(nf) }
|
||||
func (nf TraingModelRowDefinitions) Swap(i, j int) { nf[i], nf[j] = nf[j], nf[i] }
|
||||
func (nf TraingModelRowDefinitions) Less(i, j int) bool {
|
||||
return nf[i].acuracy < nf[j].acuracy
|
||||
}
|
||||
|
||||
type ToRemoveList []int
|
||||
|
||||
func (nf ToRemoveList) Len() int { return len(nf) }
|
||||
func (nf ToRemoveList) Swap(i, j int) { nf[i], nf[j] = nf[j], nf[i] }
|
||||
func (nf ToRemoveList) Less(i, j int) bool {
|
||||
return nf[i] < nf[j]
|
||||
}
|
||||
|
||||
func trainModel(c *Context, model *BaseModel) {
|
||||
definitionsRows, err := c.Db.Query("select id, target_accuracy, epoch from model_definition where status=$1 and model_id=$2", MODEL_DEFINITION_STATUS_INIT, model.Id)
|
||||
if err != nil {
|
||||
@ -246,16 +265,11 @@ func trainModel(c *Context, model *BaseModel) {
|
||||
}
|
||||
defer definitionsRows.Close()
|
||||
|
||||
type row struct {
|
||||
id string
|
||||
target_accuracy int
|
||||
epoch int
|
||||
}
|
||||
|
||||
definitions := []row{}
|
||||
var definitions TraingModelRowDefinitions = []TrainModelRow{}
|
||||
|
||||
for definitionsRows.Next() {
|
||||
var rowv row
|
||||
var rowv TrainModelRow
|
||||
rowv.acuracy = 0
|
||||
if err = definitionsRows.Scan(&rowv.id, &rowv.target_accuracy, &rowv.epoch); err != nil {
|
||||
c.Logger.Error("Failed to train Model Could not read definition from db!Err:")
|
||||
c.Logger.Error(err)
|
||||
@ -271,23 +285,23 @@ func trainModel(c *Context, model *BaseModel) {
|
||||
return
|
||||
}
|
||||
|
||||
toTrain := len(definitions)
|
||||
firstRound := true
|
||||
var newDefinitions = []row{}
|
||||
copy(newDefinitions, definitions)
|
||||
finished := false
|
||||
|
||||
for {
|
||||
var toRemove ToRemoveList = []int{}
|
||||
for i, def := range definitions {
|
||||
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_TRAINING)
|
||||
accuracy, err := trainDefinition(c, model, def.id, !firstRound)
|
||||
if err != nil {
|
||||
c.Logger.Error("Failed to train definition!Err:", "err", err)
|
||||
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
||||
toTrain = toTrain - 1
|
||||
newDefinitions = remove(newDefinitions, i)
|
||||
toRemove = append(toRemove, i)
|
||||
continue
|
||||
}
|
||||
def.epoch += EPOCH_PER_RUN
|
||||
accuracy = accuracy * 100
|
||||
def.acuracy = accuracy
|
||||
|
||||
if accuracy >= float64(def.target_accuracy) {
|
||||
c.Logger.Info("Found a definition that reaches target_accuracy!")
|
||||
@ -305,30 +319,68 @@ func trainModel(c *Context, model *BaseModel) {
|
||||
return
|
||||
}
|
||||
|
||||
toTrain = 0
|
||||
finished = true
|
||||
break
|
||||
}
|
||||
|
||||
if def.epoch > MAX_EPOCH {
|
||||
fmt.Printf("Failed to train definition! Accuracy less %f < %d\n", accuracy, def.target_accuracy)
|
||||
ModelDefinitionUpdateStatus(c, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
|
||||
toTrain = toTrain - 1
|
||||
newDefinitions = remove(newDefinitions, i)
|
||||
toRemove = append(toRemove, i)
|
||||
continue
|
||||
}
|
||||
|
||||
_, err = c.Db.Exec("update model_definition set accuracy=$1, epoch=$2 where id=$3", accuracy, def.epoch, def.id)
|
||||
_, err = c.Db.Exec("update model_definition set accuracy=$1, epoch=$2, status=$3 where id=$4", accuracy, def.epoch, MODEL_DEFINITION_STATUS_PAUSED_TRAINING, def.id)
|
||||
if err != nil {
|
||||
c.Logger.Error("Failed to train definition!Err:\n", "err", err)
|
||||
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
|
||||
return
|
||||
}
|
||||
}
|
||||
copy(definitions, newDefinitions)
|
||||
|
||||
firstRound = false
|
||||
if toTrain == 0 {
|
||||
if finished {
|
||||
break
|
||||
}
|
||||
|
||||
sort.Reverse(toRemove)
|
||||
|
||||
c.Logger.Info("Round done", "toRemove", toRemove)
|
||||
|
||||
for _, n := range toRemove {
|
||||
definitions = remove(definitions, n)
|
||||
}
|
||||
|
||||
len_def := len(definitions)
|
||||
|
||||
if len_def == 0 {
|
||||
break
|
||||
}
|
||||
|
||||
if len_def == 1 {
|
||||
continue
|
||||
}
|
||||
|
||||
sort.Sort(definitions)
|
||||
|
||||
acc := definitions[0].acuracy - 20
|
||||
|
||||
c.Logger.Info("Training models, Highest acc", "acc", acc)
|
||||
|
||||
toRemove = []int{}
|
||||
for i, def := range definitions {
|
||||
if def.acuracy < acc {
|
||||
toRemove = append(toRemove, i)
|
||||
}
|
||||
}
|
||||
|
||||
c.Logger.Info("Removing due to accuracy", "toRemove", toRemove)
|
||||
|
||||
sort.Reverse(toRemove)
|
||||
for _, n := range toRemove {
|
||||
c.Logger.Warn("Removing definition not fast enough learning", "n", n)
|
||||
definitions = remove(definitions, n)
|
||||
}
|
||||
}
|
||||
|
||||
rows, err := c.Db.Query("select id from model_definition where model_id=$1 and status=$2 order by accuracy desc limit 1;", model.Id, MODEL_DEFINITION_STATUS_TRANIED)
|
||||
@ -437,14 +489,26 @@ func generateDefinition(c *Context, model *BaseModel, target_accuracy int, numbe
|
||||
return failed()
|
||||
}
|
||||
|
||||
order := 1;
|
||||
order := 1
|
||||
|
||||
// Note the shape of the first layer defines the import size
|
||||
if complexity == 2 {
|
||||
// Note the shape for now is no used
|
||||
width := int(math.Pow(2, math.Floor(math.Log(float64(model.Width))/math.Log(2.0))))
|
||||
height := int(math.Pow(2, math.Floor(math.Log(float64(model.Height))/math.Log(2.0))))
|
||||
c.Logger.Warn("Complexity 2 creating model with smaller size", "width", width, "height", height)
|
||||
err = MakeLayer(c.Db, def_id, order, LAYER_INPUT, fmt.Sprintf("%d,%d,1", width, height))
|
||||
if err != nil {
|
||||
return failed()
|
||||
}
|
||||
order++
|
||||
} else {
|
||||
err = MakeLayer(c.Db, def_id, order, LAYER_INPUT, fmt.Sprintf("%d,%d,1", model.Width, model.Height))
|
||||
if err != nil {
|
||||
return failed()
|
||||
}
|
||||
order++;
|
||||
order++
|
||||
}
|
||||
|
||||
if complexity == 0 {
|
||||
|
||||
@ -452,12 +516,12 @@ func generateDefinition(c *Context, model *BaseModel, target_accuracy int, numbe
|
||||
if err != nil {
|
||||
return failed()
|
||||
}
|
||||
order++;
|
||||
order++
|
||||
|
||||
loop := int(math.Log2(float64(number_of_classes)))
|
||||
for i := 0; i < loop; i++ {
|
||||
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
||||
order++;
|
||||
order++
|
||||
if err != nil {
|
||||
ModelUpdateStatus(c, model.Id, FAILED_PREPARING_TRAINING)
|
||||
// TODO improve this response
|
||||
@ -465,17 +529,17 @@ func generateDefinition(c *Context, model *BaseModel, target_accuracy int, numbe
|
||||
}
|
||||
}
|
||||
|
||||
} else if (complexity == 1) {
|
||||
} else if complexity == 1 {
|
||||
|
||||
loop := int((math.Log(float64(model.Width))/math.Log(float64(10))))
|
||||
loop := int((math.Log(float64(model.Width)) / math.Log(float64(10))))
|
||||
if loop == 0 {
|
||||
loop = 1;
|
||||
loop = 1
|
||||
}
|
||||
for i := 0; i < loop; i++ {
|
||||
err = MakeLayer(c.Db, def_id, order, LAYER_SIMPLE_BLOCK, "")
|
||||
order++;
|
||||
order++
|
||||
if err != nil {
|
||||
return failed();
|
||||
return failed()
|
||||
}
|
||||
}
|
||||
|
||||
@ -483,17 +547,49 @@ func generateDefinition(c *Context, model *BaseModel, target_accuracy int, numbe
|
||||
if err != nil {
|
||||
return failed()
|
||||
}
|
||||
order++;
|
||||
order++
|
||||
|
||||
loop = int((math.Log(float64(number_of_classes))/math.Log(float64(10)))/2)
|
||||
loop = int((math.Log(float64(number_of_classes)) / math.Log(float64(10))) / 2)
|
||||
if loop == 0 {
|
||||
loop = 1;
|
||||
loop = 1
|
||||
}
|
||||
for i := 0; i < loop; i++ {
|
||||
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
||||
order++;
|
||||
order++
|
||||
if err != nil {
|
||||
return failed();
|
||||
return failed()
|
||||
}
|
||||
}
|
||||
|
||||
} else if complexity == 2 {
|
||||
|
||||
loop := int((math.Log(float64(model.Width)) / math.Log(float64(10))))
|
||||
if loop == 0 {
|
||||
loop = 1
|
||||
}
|
||||
for i := 0; i < loop; i++ {
|
||||
err = MakeLayer(c.Db, def_id, order, LAYER_SIMPLE_BLOCK, "")
|
||||
order++
|
||||
if err != nil {
|
||||
return failed()
|
||||
}
|
||||
}
|
||||
|
||||
err = MakeLayer(c.Db, def_id, order, LAYER_FLATTEN, "")
|
||||
if err != nil {
|
||||
return failed()
|
||||
}
|
||||
order++
|
||||
|
||||
loop = int((math.Log(float64(number_of_classes)) / math.Log(float64(10))) / 2)
|
||||
if loop == 0 {
|
||||
loop = 1
|
||||
}
|
||||
for i := 0; i < loop; i++ {
|
||||
err = MakeLayer(c.Db, def_id, order, LAYER_DENSE, fmt.Sprintf("%d,1", number_of_classes*(loop-i)))
|
||||
order++
|
||||
if err != nil {
|
||||
return failed()
|
||||
}
|
||||
}
|
||||
|
||||
@ -523,20 +619,27 @@ func generateDefinitions(c *Context, model *BaseModel, target_accuracy int, numb
|
||||
return c.Error500(err)
|
||||
}
|
||||
|
||||
if (number_of_models == 1) {
|
||||
if (model.Width < 100 && model.Height < 100 && len(cls) < 30) {
|
||||
generateDefinition(c, model, target_accuracy, len(cls), 0)
|
||||
cls_len := len(cls)
|
||||
|
||||
if number_of_models == 1 {
|
||||
if model.Width < 100 && model.Height < 100 && cls_len < 30 {
|
||||
generateDefinition(c, model, target_accuracy, cls_len, 0)
|
||||
} else if model.Width > 100 && model.Height > 100 {
|
||||
generateDefinition(c, model, target_accuracy, cls_len, 2)
|
||||
} else {
|
||||
generateDefinition(c, model, target_accuracy, len(cls), 1)
|
||||
generateDefinition(c, model, target_accuracy, cls_len, 1)
|
||||
}
|
||||
} else if number_of_models == 3 {
|
||||
for i := 0; i < number_of_models; i++ {
|
||||
generateDefinition(c, model, target_accuracy, cls_len, i)
|
||||
}
|
||||
} else {
|
||||
// TODO handle incrisea the complexity
|
||||
for i := 0; i < number_of_models; i++ {
|
||||
generateDefinition(c, model, target_accuracy, len(cls), 0)
|
||||
generateDefinition(c, model, target_accuracy, cls_len, 0)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
@ -626,7 +729,7 @@ func handleTrain(handle *Handle) {
|
||||
|
||||
accuracy := 0.0
|
||||
|
||||
if !CheckId(f, "model_id") || !CheckId(f, "definition") || CheckEmpty(f, "epoch") || !CheckFloat64(f, "accuracy", &accuracy){
|
||||
if !CheckId(f, "model_id") || !CheckId(f, "definition") || CheckEmpty(f, "epoch") || !CheckFloat64(f, "accuracy", &accuracy) {
|
||||
c.Logger.Warn("Invalid: model_id or definition or epoch or accuracy")
|
||||
return c.UnsafeErrorCode(nil, 400, nil)
|
||||
}
|
||||
|
2
main.go
2
main.go
@ -4,6 +4,7 @@ import (
|
||||
"database/sql"
|
||||
"fmt"
|
||||
|
||||
"github.com/charmbracelet/log"
|
||||
_ "github.com/lib/pq"
|
||||
|
||||
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/models"
|
||||
@ -36,6 +37,7 @@ func main() {
|
||||
|
||||
_, err = db.Exec("update models set status=$1 where status=$2", models_utils.FAILED_TRAINING, models_utils.TRAINING)
|
||||
if err != nil {
|
||||
log.Warn("Database might not be on")
|
||||
panic(err)
|
||||
}
|
||||
|
||||
|
@ -14,7 +14,7 @@ create table if not exists models (
|
||||
width integer,
|
||||
height integer,
|
||||
color_mode varchar (20),
|
||||
format varchar (20)
|
||||
format varchar (20) default ''
|
||||
);
|
||||
|
||||
-- drop table if exists model_data_point;
|
||||
|
@ -438,27 +438,37 @@
|
||||
<thead>
|
||||
<tr>
|
||||
<th>
|
||||
Status
|
||||
</th>
|
||||
<th>
|
||||
EpochProgress
|
||||
Training Round Progress
|
||||
</th>
|
||||
<th>
|
||||
Accuracy
|
||||
</th>
|
||||
<th>
|
||||
Status
|
||||
</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{{ range .Defs}}
|
||||
<tr>
|
||||
<td>
|
||||
{{.EpochProgress}}/20
|
||||
</td>
|
||||
<td>
|
||||
{{.Accuracy}}%
|
||||
</td>
|
||||
<td style="text-align: center;">
|
||||
{{ if (eq .Status 2) }}
|
||||
<span class="bi bi-book" style="color: green;"></span>
|
||||
{{ else if (eq .Status 3) }}
|
||||
<span class="bi bi-book-half" style="color: green;"></span>
|
||||
{{ else if (eq .Status 6) }}
|
||||
<span class="bi bi-book-half" style="color: orange;"></span>
|
||||
{{ else if (eq .Status -3) }}
|
||||
<span class="bi bi-book-half" style="color: red;"></span>
|
||||
{{ else }}
|
||||
{{.Status}}
|
||||
</td>
|
||||
<td>
|
||||
{{.EpochProgress}}
|
||||
</td>
|
||||
<td>
|
||||
{{.Accuracy}}
|
||||
{{ end }}
|
||||
</td>
|
||||
</tr>
|
||||
{{ end }}
|
||||
|
@ -8,7 +8,7 @@ import requests
|
||||
|
||||
class NotifyServerCallback(tf.keras.callbacks.Callback):
|
||||
def on_epoch_end(self, epoch, log, *args, **kwargs):
|
||||
requests.get(f'http://localhost:8000/model/epoch/update?model_id={{.Model.Id}}&epoch={epoch}&accuracy={log["accuracy"]}&definition={{.DefId}}')
|
||||
requests.get(f'http://localhost:8000/model/epoch/update?model_id={{.Model.Id}}&epoch={epoch + 1}&accuracy={log["accuracy"]}&definition={{.DefId}}')
|
||||
|
||||
|
||||
DATA_DIR = "{{ .DataDir }}"
|
||||
@ -160,7 +160,9 @@ model.compile(
|
||||
optimizer=tf.keras.optimizers.Adam(),
|
||||
metrics=['accuracy'])
|
||||
|
||||
his = model.fit(dataset, validation_data= dataset_validation, epochs={{.EPOCH_PER_RUN}}, callbacks=[NotifyServerCallback()], use_multiprocessing = True)
|
||||
his = model.fit(dataset, validation_data= dataset_validation, epochs={{.EPOCH_PER_RUN}}, callbacks=[
|
||||
NotifyServerCallback(),
|
||||
tf.keras.callbacks.EarlyStopping("loss", mode="min", patience=5)], use_multiprocessing = True)
|
||||
|
||||
acc = his.history["accuracy"]
|
||||
|
||||
@ -169,5 +171,5 @@ f.write(str(acc[-1]))
|
||||
f.close()
|
||||
|
||||
|
||||
tf.saved_model.save(model, "model")
|
||||
model.save("model.keras")
|
||||
tf.saved_model.save(model, "{{ .SaveModelPath }}/model")
|
||||
model.save("{{ .SaveModelPath }}/model.keras")
|
||||
|
Loading…
Reference in New Issue
Block a user