feat: started working on #23

This commit is contained in:
Andre Henriques 2023-10-02 21:15:31 +01:00
parent bc948d4796
commit a1d1a81ec5
9 changed files with 155 additions and 93 deletions

BIN
a.out

Binary file not shown.

View File

@ -5,23 +5,19 @@ import (
"errors" "errors"
) )
var FailedToGetIdAfterInsertError = errors.New("Failed to Get Id After Insert Error")
func AddDataPoint(db *sql.DB, class_id string, file_path string, mode DATA_POINT_MODE) (id string, err error) { func AddDataPoint(db *sql.DB, class_id string, file_path string, mode DATA_POINT_MODE) (id string, err error) {
id = "" id = ""
_, err = db.Exec("insert into model_data_point (class_id, file_path, model_mode) values ($1, $2, $3);", class_id, file_path, mode) result, err := db.Query("insert into model_data_point (class_id, file_path, model_mode) values ($1, $2, $3) returning id;", class_id, file_path, mode)
if err != nil { if err != nil {
return return
} }
defer result.Close()
rows, err := db.Query("select id from model_data_point where class_id=$1 and file_path=$2 and model_mode=$3", class_id, file_path, mode) if !result.Next() {
if err != nil { err = FailedToGetIdAfterInsertError
return return
} }
defer rows.Close() err = result.Scan(&id)
if !rows.Next() {
return id, errors.New("Something worng")
}
err = rows.Scan(&id)
return return
} }

View File

@ -46,7 +46,7 @@ func ModelHasDataPoints(db *sql.DB, model_id string) (result bool, err error) {
var ClassAlreadyExists = errors.New("Class aready exists") var ClassAlreadyExists = errors.New("Class aready exists")
func CreateClass(db *sql.DB, model_id string, name string) (id string, err error) { func CreateClass(db *sql.DB, model_id string, order int, name string) (id string, err error) {
id = "" id = ""
rows, err := db.Query("select id from model_classes where model_id=$1 and name=$2;", model_id, name) rows, err := db.Query("select id from model_classes where model_id=$1 and name=$2;", model_id, name)
if err != nil { if err != nil {
@ -58,25 +58,16 @@ func CreateClass(db *sql.DB, model_id string, name string) (id string, err error
return id, ClassAlreadyExists return id, ClassAlreadyExists
} }
_, err = db.Exec("insert into model_classes (model_id, name) values ($1, $2)", model_id, name) rows, err = db.Query("insert into model_classes (model_id, name, class_order) values ($1, $2, $3) returning id;", model_id, name, order)
if err != nil {
return
}
rows, err = db.Query("select id from model_classes where model_id=$1 and name=$2;", model_id, name)
if err != nil { if err != nil {
return return
} }
defer rows.Close() defer rows.Close()
if !rows.Next() { if !rows.Next() {
return id, errors.New("Something wrong") return id, errors.New("Insert did not return anything")
}
if err = rows.Scan(&id); err != nil {
return
} }
err = rows.Scan(&id)
return return
} }

View File

@ -28,11 +28,11 @@ func InsertIfNotPresent(ss []string, s string) []string {
return ss return ss
} }
func processZipFile(handle *Handle, id string) { func processZipFile(handle *Handle, model_id string) {
reader, err := zip.OpenReader(path.Join("savedData", id, "base_data.zip")) reader, err := zip.OpenReader(path.Join("savedData", model_id, "base_data.zip"))
if err != nil { if err != nil {
// TODO add msg to error // TODO add msg to error
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE) ModelUpdateStatus(handle, model_id, FAILED_PREPARING_ZIP_FILE)
fmt.Printf("Faield to proccess zip file failed to open reader\n") fmt.Printf("Faield to proccess zip file failed to open reader\n")
fmt.Println(err) fmt.Println(err)
return return
@ -52,7 +52,7 @@ func processZipFile(handle *Handle, id string) {
if paths[0] != "training" && paths[0] != "testing" { if paths[0] != "training" && paths[0] != "testing" {
fmt.Printf("Invalid file '%s' TODO add msg to response!!!\n", file.Name) fmt.Printf("Invalid file '%s' TODO add msg to response!!!\n", file.Name)
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE) ModelUpdateStatus(handle, model_id, FAILED_PREPARING_ZIP_FILE)
return return
} }
@ -67,31 +67,21 @@ func processZipFile(handle *Handle, id string) {
fmt.Printf("testing and training are diferent\n") fmt.Printf("testing and training are diferent\n")
fmt.Println(testing) fmt.Println(testing)
fmt.Println(training) fmt.Println(training)
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE) ModelUpdateStatus(handle, model_id, FAILED_PREPARING_ZIP_FILE)
return return
} }
base_path := path.Join("savedData", id, "data") base_path := path.Join("savedData", model_id, "data")
if err = os.MkdirAll(base_path, os.ModePerm); err != nil {
fmt.Printf("Failed to create base_path dir\n")
ModelUpdateStatus(handle, model_id, FAILED_PREPARING_ZIP_FILE)
return
}
ids := map[string]string{} ids := map[string]string{}
for _, name := range training { for i, name := range training {
dir_path := path.Join(base_path, "training", name) id, err := model_classes.CreateClass(handle.Db, model_id, i, name)
err = os.MkdirAll(dir_path, os.ModePerm)
if err != nil {
fmt.Printf("Failed to create dir %s\n", dir_path)
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE)
return
}
dir_path = path.Join(base_path, "testing", name)
err = os.MkdirAll(dir_path, os.ModePerm)
if err != nil {
fmt.Printf("Failed to create dir %s\n", dir_path)
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE)
return
}
id, err := model_classes.CreateClass(handle.Db, id, name)
if err != nil { if err != nil {
fmt.Printf("Failed to create class '%s' on db\n", name) fmt.Printf("Failed to create class '%s' on db\n", name)
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE) ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE)
@ -105,23 +95,19 @@ func processZipFile(handle *Handle, id string) {
continue continue
} }
file_path := path.Join(base_path, file.Name)
f, err := os.Create(file_path)
if err != nil {
fmt.Printf("Could not create file %s\n", file_path)
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE)
return
}
defer f.Close()
data, err := reader.Open(file.Name) data, err := reader.Open(file.Name)
if err != nil { if err != nil {
fmt.Printf("Could not create file %s\n", file_path) fmt.Printf("Could not open file in zip %s\n", file.Name)
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE) ModelUpdateStatus(handle, model_id, FAILED_PREPARING_ZIP_FILE)
return return
} }
defer data.Close() defer data.Close()
file_data, err := io.ReadAll(data) file_data, err := io.ReadAll(data)
f.Write(file_data) if err != nil {
fmt.Printf("Could not read file file in zip %s\n", file.Name)
ModelUpdateStatus(handle, model_id, FAILED_PREPARING_ZIP_FILE)
return
}
// TODO check if the file is a valid photo that matched the defined photo on the database // TODO check if the file is a valid photo that matched the defined photo on the database
@ -132,17 +118,27 @@ func processZipFile(handle *Handle, id string) {
mode = model_classes.DATA_POINT_MODE_TESTING mode = model_classes.DATA_POINT_MODE_TESTING
} }
_, err = model_classes.AddDataPoint(handle.Db, ids[parts[1]], "file://" + parts[2], mode) data_point_id, err := model_classes.AddDataPoint(handle.Db, ids[parts[1]], "id://", mode)
if err != nil { if err != nil {
fmt.Printf("Failed to add data point for %s\n", id) fmt.Printf("Failed to add data point for %s\n", model_id)
fmt.Println(err) fmt.Println(err)
ModelUpdateStatus(handle, id, FAILED_PREPARING_ZIP_FILE) ModelUpdateStatus(handle, model_id, FAILED_PREPARING_ZIP_FILE)
return return
} }
file_path := path.Join(base_path, data_point_id + ".png")
f, err := os.Create(file_path)
if err != nil {
fmt.Printf("Could not create file %s\n", file_path)
ModelUpdateStatus(handle, model_id, FAILED_PREPARING_ZIP_FILE)
return
}
defer f.Close()
f.Write(file_data)
} }
fmt.Printf("Added data to model '%s'!\n", id) fmt.Printf("Added data to model '%s'!\n", model_id)
ModelUpdateStatus(handle, id, CONFIRM_PRE_TRAINING) ModelUpdateStatus(handle, model_id, CONFIRM_PRE_TRAINING)
} }
func handleDataUpload(handle *Handle) { func handleDataUpload(handle *Handle) {

View File

@ -81,6 +81,8 @@ func handleDelete(handle *Handle) {
} }
switch model.Status { switch model.Status {
case FAILED_TRAINING:
fallthrough
case FAILED_PREPARING_TRAINING: case FAILED_PREPARING_TRAINING:
fallthrough fallthrough
case FAILED_PREPARING: case FAILED_PREPARING:

View File

@ -71,6 +71,40 @@ func MakeLayer(db *sql.DB, def_id string, layer_order int, layer_type LayerType,
return return
} }
func generateCvs(handle *Handle, run_path string, model_id string) (count int, err error) {
classes, err := handle.Db.Query("select count(*) from model_classes where model_id=$1;", model_id)
if err != nil { return }
defer classes.Close()
if !classes.Next() { return }
if err = classes.Scan(&count); err != nil { return }
data, err := handle.Db.Query("select mpd.id, mc.class_order, mdp.file_path from model_data_point as mdp inner join model_classes as mc on mc.id = mdp.class_id where mc.model_id = $1;", model_id)
if err != nil { return }
defer data.Close()
type row struct {
path string
class_order int
}
got := []row{}
for data.Next() {
var id string
var class_order int
var file_path string
if err = data.Scan(&id, &class_order, &file_path); err != nil { return }
if file_path == "id://" {
got = append(got, row{id, class_order})
} else {
return count, errors.New("TODO generateCvs to file_path " + file_path)
}
}
return
}
func trainDefinition(handle *Handle, model_id string, definition_id string) (accuracy float64, err error) { func trainDefinition(handle *Handle, model_id string, definition_id string) (accuracy float64, err error) {
accuracy = 0 accuracy = 0
layers, err := handle.Db.Query("select layer_type, shape from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id) layers, err := handle.Db.Query("select layer_type, shape from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
@ -103,6 +137,10 @@ func trainDefinition(handle *Handle, model_id string, definition_id string) (acc
return return
} }
if err = generateCvs(handle, run_path); err != nil {
return
}
// Create python script // Create python script
f, err := os.Create(path.Join(run_path, "run.py")) f, err := os.Create(path.Join(run_path, "run.py"))
if err != nil { if err != nil {
@ -110,6 +148,7 @@ func trainDefinition(handle *Handle, model_id string, definition_id string) (acc
} }
defer f.Close() defer f.Close()
tmpl, err := template.New("python_model_template.py").ParseFiles("views/py/python_model_template.py") tmpl, err := template.New("python_model_template.py").ParseFiles("views/py/python_model_template.py")
if err != nil { if err != nil {
return return
@ -118,13 +157,15 @@ func trainDefinition(handle *Handle, model_id string, definition_id string) (acc
if err = tmpl.Execute(f, AnyMap{ if err = tmpl.Execute(f, AnyMap{
"Layers": got, "Layers": got,
"Size": got[0].Shape, "Size": got[0].Shape,
"DataDir": path.Join(getDir(), "savedData", model_id, "data", "training"), "DataDir": path.Join(getDir(), "savedData", model_id, "data"),
}); err != nil { }); err != nil {
return return
} }
// Run the command // Run the command
if err = exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).Run(); err != nil { out, err := exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).Output()
if err != nil {
fmt.Println(string(out))
return return
} }
@ -384,7 +425,8 @@ func handleTrain(handle *Handle) {
// TODO improve this response // TODO improve this response
return Error500(err) return Error500(err)
} }
err = MakeLayer(handle.Db, def_id, 5, LAYER_DENSE, fmt.Sprintf("%d,1", len(cls))) // Using sparce
err = MakeLayer(handle.Db, def_id, 5, LAYER_DENSE, fmt.Sprintf("1,1", len(cls)))
if err != nil { if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING) ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response // TODO improve this response
@ -400,7 +442,6 @@ func handleTrain(handle *Handle) {
} }
// TODO start training with id fid // TODO start training with id fid
go trainModel(handle, model) go trainModel(handle, model)
ModelUpdateStatus(handle, model.Id, TRAINING) ModelUpdateStatus(handle, model.Id, TRAINING)

View File

@ -21,7 +21,8 @@ create table if not exists models (
create table if not exists model_classes ( create table if not exists model_classes (
id uuid primary key default gen_random_uuid(), id uuid primary key default gen_random_uuid(),
model_id uuid references models (id) on delete cascade, model_id uuid references models (id) on delete cascade,
name varchar (70) not null name varchar (70) not null,
class_order integer
); );
-- drop table if exists model_data_point; -- drop table if exists model_data_point;

View File

@ -63,7 +63,11 @@
{{range .List}} {{range .List}}
<tr> <tr>
<td> <td>
{{.FilePath}} {{ if eq .FilePath "id://" }}
Managed
{{ else }}
{{.FilePath}}
{{ end }}
</td> </td>
<td> <td>
{{ if (eq .Mode 2) }} {{ if (eq .Mode 2) }}
@ -73,8 +77,8 @@
{{ end }} {{ end }}
</td> </td>
<td class="text-center"> <td class="text-center">
{{ if startsWith .FilePath "file://" }} {{ if startsWith .FilePath "id://" }}
<img src="/savedData/{{ $.ModelId }}/data/{{ if (eq .Mode 2) }}testing{{ else }}training{{ end }}/{{ $.Name }}/{{ replace .FilePath "file://" "" 1 }}" height="30px" width="30px" style="object-fit: contain;" /> <img src="/savedData/{{ $.ModelId }}/data/{{ .Id }}.png" height="30px" width="30px" style="object-fit: contain;" />
{{ else }} {{ else }}
TODO TODO
img {{ .FilePath }} img {{ .FilePath }}

View File

@ -1,33 +1,64 @@
import tensorflow as tf import tensorflow as tf
import random import random
from tensorflow import keras from tensorflow import keras
from tensorflow.data import AUTOTUNE
from keras import layers, losses, optimizers from keras import layers, losses, optimizers
DATA_DIR = "{{ .DataDir }}"
image_size = ({{ .Size }})
#based on https://www.tensorflow.org/tutorials/load_data/images
def pathToLabel(path):
path = tf.strings.regex_replace(path, DATA_DIR, "")
path = tf.strings.regex_replace(path, ".jpg", "")
return train_labels[tf.strings.to_number(path, out_type=tf.int32)]
def decode_image(img):
# channels were reduced to 1 since image is grayscale
# TODO chnage channel number based if grayscale
img = tf.io.decode_png(img, channels=1)
return tf.image.resize(img, image_size)
def process_path(path):
label = pathToLabel(path)
img = tf.io.read_file(path)
img = decode_image(img)
return img, label
def configure_for_performance(ds: tf.data.Dataset) -> tf.data.Dataset:
#ds = ds.cache()
ds = ds.shuffle(buffer_size= 1000)
ds = ds.batch(batch_size)
ds = ds.prefetch(AUTOTUNE)
return ds
def prepare_dataset(ds: tf.data.Dataset) -> tf.data.Dataset:
ds = ds.map(process_path, num_parallel_calls=AUTOTUNE)
ds = configure_for_performance(ds)
return ds
seed = random.randint(0, 100000000) seed = random.randint(0, 100000000)
batch_size = 100 batch_size = 100
dataset = keras.utils.image_dataset_from_directory( # Read all the files from the direcotry
"{{ .DataDir }}", list_ds = tf.data.Dataset.list_files(str(f'{DATA_DIR}/*'), shuffle=False)
color_mode="rgb",
validation_split=0.2,
label_mode='categorical',
seed=seed,
shuffle=True,
subset="training",
image_size=({{ .Size }}),
batch_size=batch_size)
dataset_validation = keras.utils.image_dataset_from_directory( image_count = len(list_ds)
"{{ .DataDir }}",
color_mode="rgb", list_ds = list_ds.shuffle(image_count, seed=seed)
validation_split=0.2,
label_mode='categorical', val_size = int(image_count * 0.3)
seed=seed,
shuffle=True, train_ds = list_ds.skip(val_size)
subset="validation", val_ds = list_ds.take(val_size)
image_size=({{ .Size }}),
batch_size=batch_size) dataset = prepare_dataset(train_ds)
dataset_validation = prepare_dataset(val_ds)
model = keras.Sequential([ model = keras.Sequential([
{{- range .Layers }} {{- range .Layers }}
@ -44,7 +75,7 @@ model = keras.Sequential([
]) ])
model.compile( model.compile(
loss=losses.CategoricalCrossentropy(), loss=losses.SparceCategoricalCrossentropy(),
optimizer=tf.keras.optimizers.Adam(), optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy']) metrics=['accuracy'])