moved code arround

This commit is contained in:
Andre Henriques 2024-02-05 16:42:23 +00:00
parent cbfd49c5fb
commit 6a0ac457d7
3 changed files with 90 additions and 211 deletions

View File

@ -42,6 +42,11 @@ func ModelDefinitionUpdateStatus(c *Context, id string, status ModelDefinitionSt
return return
} }
func UpdateStatus (c *Context, table string, id string, status int) (err error) {
_, err = c.Db.Exec(fmt.Sprintf("update %s set status = $1 where id = $2", table), status, id)
return
}
func MakeLayer(db *sql.DB, def_id string, layer_order int, layer_type LayerType, shape string) (err error) { func MakeLayer(db *sql.DB, def_id string, layer_order int, layer_type LayerType, shape string) (err error) {
_, err = db.Exec("insert into model_definition_layer (def_id, layer_order, layer_type, shape) values ($1, $2, $3, $4)", def_id, layer_order, layer_type, shape) _, err = db.Exec("insert into model_definition_layer (def_id, layer_order, layer_type, shape) values ($1, $2, $3, $4)", def_id, layer_order, layer_type, shape)
return return
@ -108,9 +113,11 @@ func trainDefinition(c *Context, model *BaseModel, definition_id string, load_pr
type layerrow struct { type layerrow struct {
LayerType int LayerType int
Shape string Shape string
LayerNum int
} }
got := []layerrow{} got := []layerrow{}
i := 1
for layers.Next() { for layers.Next() {
var row = layerrow{} var row = layerrow{}
@ -118,7 +125,9 @@ func trainDefinition(c *Context, model *BaseModel, definition_id string, load_pr
return return
} }
row.Shape = shapeToSize(row.Shape) row.Shape = shapeToSize(row.Shape)
row.LayerNum = 1
got = append(got, row) got = append(got, row)
i = i + 1
} }
// Generate run folder // Generate run folder
@ -207,7 +216,7 @@ func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load
// Get untrained models heads // Get untrained models heads
// Status = 2 (INIT) // Status = 2 (INIT)
rows, err := c.Db.Query("select id, range_start, range_end exp_model_head where def_id=$1 and status = 2", definition_id) rows, err := c.Db.Query("select id, range_start, range_end from exp_model_head where def_id=$1 and status = 2", definition_id)
if err != nil { if err != nil {
return return
} }
@ -237,6 +246,8 @@ func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load
return return
} }
UpdateStatus(c, "exp_model_head", exp.id, MODEL_DEFINITION_STATUS_TRANIED)
layers, err := c.Db.Query("select layer_type, shape, exp_type from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id) layers, err := c.Db.Query("select layer_type, shape, exp_type from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
if err != nil { if err != nil {
return return
@ -300,7 +311,7 @@ func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load
} }
defer f.Close() defer f.Close()
tmpl, err := template.New("python_model_template-exp.py").ParseFiles("views/py/python_model_template.py") tmpl, err := template.New("python_model_template.py").ParseFiles("views/py/python_model_template.py")
if err != nil { if err != nil {
return return
} }
@ -312,6 +323,7 @@ func trainDefinitionExp(c *Context, model *BaseModel, definition_id string, load
"Layers": got, "Layers": got,
"Size": got[0].Shape, "Size": got[0].Shape,
"DataDir": path.Join(getDir(), "savedData", model.Id, "data"), "DataDir": path.Join(getDir(), "savedData", model.Id, "data"),
"HeadId": exp.id,
"RunPath": run_path, "RunPath": run_path,
"ColorMode": model.ImageMode, "ColorMode": model.ImageMode,
"Model": model, "Model": model,
@ -613,17 +625,14 @@ func trainModelExp(c *Context, model *BaseModel) {
var rowv TrainModelRow var rowv TrainModelRow
rowv.acuracy = 0 rowv.acuracy = 0
if err = definitionsRows.Scan(&rowv.id, &rowv.target_accuracy, &rowv.epoch); err != nil { if err = definitionsRows.Scan(&rowv.id, &rowv.target_accuracy, &rowv.epoch); err != nil {
c.Logger.Error("Failed to train Model Could not read definition from db!Err:") failed("Failed to train Model Could not read definition from db!")
c.Logger.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
definitions = append(definitions, rowv) definitions = append(definitions, rowv)
} }
if len(definitions) == 0 { if len(definitions) == 0 {
c.Logger.Error("No Definitions defined!") failed("No Definitions defined!")
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
@ -652,15 +661,13 @@ func trainModelExp(c *Context, model *BaseModel) {
c.Logger.Info("Found a definition that reaches target_accuracy!") c.Logger.Info("Found a definition that reaches target_accuracy!")
_, err = c.Db.Exec("update model_definition set accuracy=$1, status=$2, epoch=$3 where id=$4", accuracy, MODEL_DEFINITION_STATUS_TRANIED, def.epoch, def.id) _, err = c.Db.Exec("update model_definition set accuracy=$1, status=$2, epoch=$3 where id=$4", accuracy, MODEL_DEFINITION_STATUS_TRANIED, def.epoch, def.id)
if err != nil { if err != nil {
c.Logger.Error("Failed to train definition!Err:\n", "err", err) failed("Failed to train definition!")
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
_, err = c.Db.Exec("update model_definition set status=$1 where id!=$2 and model_id=$3 and status!=$4", MODEL_DEFINITION_STATUS_CANCELD_TRAINING, def.id, model.Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING) _, err = c.Db.Exec("update model_definition set status=$1 where id!=$2 and model_id=$3 and status!=$4", MODEL_DEFINITION_STATUS_CANCELD_TRAINING, def.id, model.Id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
if err != nil { if err != nil {
c.Logger.Error("Failed to train definition!Err:\n", "err", err) failed("Failed to train definition!")
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
@ -677,8 +684,7 @@ func trainModelExp(c *Context, model *BaseModel) {
_, err = c.Db.Exec("update model_definition set accuracy=$1, epoch=$2, status=$3 where id=$4", accuracy, def.epoch, MODEL_DEFINITION_STATUS_PAUSED_TRAINING, def.id) _, err = c.Db.Exec("update model_definition set accuracy=$1, epoch=$2, status=$3 where id=$4", accuracy, def.epoch, MODEL_DEFINITION_STATUS_PAUSED_TRAINING, def.id)
if err != nil { if err != nil {
c.Logger.Error("Failed to train definition!Err:\n", "err", err) failed("Failed to train definition!")
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
} }
@ -731,40 +737,30 @@ func trainModelExp(c *Context, model *BaseModel) {
rows, err := c.Db.Query("select id from model_definition where model_id=$1 and status=$2 order by accuracy desc limit 1;", model.Id, MODEL_DEFINITION_STATUS_TRANIED) rows, err := c.Db.Query("select id from model_definition where model_id=$1 and status=$2 order by accuracy desc limit 1;", model.Id, MODEL_DEFINITION_STATUS_TRANIED)
if err != nil { if err != nil {
c.Logger.Error("DB: failed to read definition") failed("DB: failed to read definition")
c.Logger.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
defer rows.Close() defer rows.Close()
if !rows.Next() { if !rows.Next() {
// TODO Make the Model status have a message failed("All definitions failed to train!")
c.Logger.Error("All definitions failed to train!")
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
var id string var id string
if err = rows.Scan(&id); err != nil { if err = rows.Scan(&id); err != nil {
c.Logger.Error("Failed to read id:") failed("Failed to read id")
c.Logger.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
if _, err = c.Db.Exec("update model_definition set status=$1 where id=$2;", MODEL_DEFINITION_STATUS_READY, id); err != nil { if _, err = c.Db.Exec("update model_definition set status=$1 where id=$2;", MODEL_DEFINITION_STATUS_READY, id); err != nil {
c.Logger.Error("Failed to update model definition") failed("Failed to update model definition")
c.Logger.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
to_delete, err := c.Db.Query("select id from model_definition where status != $1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id) to_delete, err := c.Db.Query("select id from model_definition where status != $1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id)
if err != nil { if err != nil {
c.Logger.Error("Failed to select model_definition to delete") failed("Failed to select model_definition to delete")
c.Logger.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
defer to_delete.Close() defer to_delete.Close()
@ -772,9 +768,7 @@ func trainModelExp(c *Context, model *BaseModel) {
for to_delete.Next() { for to_delete.Next() {
var id string var id string
if to_delete.Scan(&id); err != nil { if to_delete.Scan(&id); err != nil {
c.Logger.Error("Failed to scan the id of a model_definition to delete") failed("Failed to scan the id of a model_definition to delete")
c.Logger.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
os.RemoveAll(path.Join("savedData", model.Id, "defs", id)) os.RemoveAll(path.Join("savedData", model.Id, "defs", id))
@ -782,9 +776,7 @@ func trainModelExp(c *Context, model *BaseModel) {
// TODO Check if returning also works here // TODO Check if returning also works here
if _, err = c.Db.Exec("delete from model_definition where status!=$1 and model_id=$2;", MODEL_DEFINITION_STATUS_READY, model.Id); err != nil { if _, err = c.Db.Exec("delete from model_definition where status!=$1 and model_id=$2;", MODEL_DEFINITION_STATUS_READY, model.Id); err != nil {
c.Logger.Error("Failed to delete model_definition") failed("Failed to delete model_definition")
c.Logger.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return return
} }
@ -1255,4 +1247,63 @@ func handleTrain(handle *Handle) {
} }
return nil return nil
}) })
handle.Get("/model/head/epoch/update", func(w http.ResponseWriter, r *http.Request, c *Context) *Error {
// TODO check auth level
if c.Mode != NORMAL {
// This should only handle normal requests
c.Logger.Warn("This function only works with normal")
return c.UnsafeErrorCode(nil, 400, nil)
}
f := r.URL.Query()
accuracy := 0.0
if !CheckId(f, "head_id") || CheckEmpty(f, "epoch") || !CheckFloat64(f, "accuracy", &accuracy) {
c.Logger.Warn("Invalid: model_id or head_id or epoch or accuracy")
return c.UnsafeErrorCode(nil, 400, nil)
}
accuracy = accuracy * 100
head_id := f.Get("head_id")
epoch, err := strconv.Atoi(f.Get("epoch"))
if err != nil {
c.Logger.Warn("Epoch is not a number")
// No need to improve message because this function is only called internaly
return c.UnsafeErrorCode(nil, 400, nil)
}
rows, err := c.Db.Query("select hd.status from exp_model_head as hd where hd.id=$1;", head_id)
if err != nil {
return c.Error500(err)
}
defer rows.Close()
if !rows.Next() {
c.Logger.Error("Could not get status of model head")
return c.Error500(nil)
}
var status int
err = rows.Scan(&status)
if err != nil {
return c.Error500(err)
}
if status != 3 {
c.Logger.Warn("Head not on status 3(training)", "status", status)
// No need to improve message because this function is only called internaly
return c.UnsafeErrorCode(nil, 400, nil)
}
c.Logger.Info("Updated model_head!", "head", head_id, "progress", epoch, "accuracy", accuracy)
_, err = c.Db.Exec("update exp_model_head set epoch_progress=$1, accuracy=$2 where id=$3", epoch, accuracy, head_id)
if err != nil {
return c.Error500(err)
}
return nil
})
} }

View File

@ -1,177 +0,0 @@
import tensorflow as tf
import random
import pandas as pd
from tensorflow import keras
from tensorflow.data import AUTOTUNE
from keras import layers, losses, optimizers
import requests
class NotifyServerCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, log, *args, **kwargs):
requests.get(f'http://localhost:8000/model/epoch/update?model_id={{.Model.Id}}&epoch={epoch + 1}&accuracy={log["accuracy"]}&definition={{.DefId}}')
DATA_DIR = "{{ .DataDir }}"
image_size = ({{ .Size }})
df = pd.read_csv("{{ .RunPath }}/train.csv", dtype=str)
keys = tf.constant(df['Id'].dropna())
values = tf.constant(list(map(int, df['Index'].dropna())))
table = tf.lookup.StaticHashTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=keys,
values=values,
),
default_value=tf.constant(-1),
name="Indexes"
)
DATA_DIR_PREPARE = DATA_DIR + "/"
#based on https://www.tensorflow.org/tutorials/load_data/images
def pathToLabel(path):
path = tf.strings.regex_replace(path, DATA_DIR_PREPARE, "")
{{ if eq .Model.Format "png" }}
path = tf.strings.regex_replace(path, ".png", "")
{{ else if eq .Model.Format "jpeg" }}
path = tf.strings.regex_replace(path, ".jpeg", "")
{{ else }}
ERROR
{{ end }}
return table.lookup(tf.strings.as_string([path]))
def decode_image(img):
{{ if eq .Model.Format "png" }}
img = tf.io.decode_png(img, channels={{.ColorMode}})
{{ else if eq .Model.Format "jpeg" }}
img = tf.io.decode_jpeg(img, channels={{.ColorMode}})
{{ else }}
ERROR
{{ end }}
return tf.image.resize(img, image_size)
def process_path(path):
label = pathToLabel(path)
img = tf.io.read_file(path)
img = decode_image(img)
return img, label
def configure_for_performance(ds: tf.data.Dataset, size: int) -> tf.data.Dataset:
#ds = ds.cache()
ds = ds.shuffle(buffer_size=size)
ds = ds.batch(batch_size)
ds = ds.prefetch(AUTOTUNE)
return ds
def prepare_dataset(ds: tf.data.Dataset, size: int) -> tf.data.Dataset:
ds = ds.map(process_path, num_parallel_calls=AUTOTUNE)
ds = configure_for_performance(ds, size)
return ds
def filterDataset(path):
path = tf.strings.regex_replace(path, DATA_DIR_PREPARE, "")
{{ if eq .Model.Format "png" }}
path = tf.strings.regex_replace(path, ".png", "")
{{ else if eq .Model.Format "jpeg" }}
path = tf.strings.regex_replace(path, ".jpeg", "")
{{ else }}
ERROR
{{ end }}
return tf.reshape(table.lookup(tf.strings.as_string([path])), []) != -1
seed = random.randint(0, 100000000)
batch_size = 64
# Read all the files from the direcotry
list_ds = tf.data.Dataset.list_files(str(f'{DATA_DIR}/*'), shuffle=False)
list_ds = list_ds.filter(filterDataset)
image_count = len(list(list_ds.as_numpy_iterator()))
list_ds = list_ds.shuffle(image_count, seed=seed)
val_size = int(image_count * 0.3)
train_ds = list_ds.skip(val_size)
val_ds = list_ds.take(val_size)
dataset = prepare_dataset(train_ds, image_count)
dataset_validation = prepare_dataset(val_ds, val_size)
track = 0
def addBlock(
b_size: int,
filter_size: int,
kernel_size: int = 3,
top: bool = True,
pooling_same: bool = False,
pool_func=layers.MaxPool2D,
layerNum = 0
):
global track
# model = keras.Sequential(name=f"{track}-{b_size}-{filter_size}-{kernel_size}")
model = keras.Sequential(name=f"layer{layerNum}")
track += 1
for _ in range(b_size):
model.add(layers.Conv2D(
filter_size,
kernel_size,
padding="same"
))
model.add(layers.ReLU())
if top:
if pooling_same:
model.add(pool_func(padding="same", strides=(1, 1)))
else:
model.add(pool_func())
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.4))
return model
{{ if .LoadPrev }}
model = tf.keras.saving.load_model('{{.LastModelRunPath}}')
{{ else }}
model = keras.Sequential()
{{- range .Layers }}
{{- if eq .LayerType 1}}
model.add(layers.Rescaling(1./255, name="layer{{ .LayerNum }}"))
{{- else if eq .LayerType 2 }}
model.add(layers.Dense({{ .Shape }}, activation="sigmoid", name="layer{{ .LayerNum }}"))
{{- else if eq .LayerType 3}}
model.add(layers.Flatten(name="layer{{ .LayerNum }}"))
{{- else if eq .LayerType 4}}
model.add(addBlock(2, 128, 3, pool_func=layers.AveragePooling2D, layerNum={{.LayerNum}}))
{{- else }}
ERROR
{{- end }}
{{- end }}
{{ end }}
model.compile(
loss=losses.SparseCategoricalCrossentropy(),
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
his = model.fit(dataset, validation_data= dataset_validation, epochs={{.EPOCH_PER_RUN}}, callbacks=[
NotifyServerCallback(),
tf.keras.callbacks.EarlyStopping("loss", mode="min", patience=5)], use_multiprocessing = True)
acc = his.history["accuracy"]
f = open("accuracy.val", "w")
f.write(str(acc[-1]))
f.close()
tf.saved_model.save(model, "{{ .SaveModelPath }}/model")
model.save("{{ .SaveModelPath }}/model.keras")

View File

@ -8,7 +8,12 @@ import requests
class NotifyServerCallback(tf.keras.callbacks.Callback): class NotifyServerCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, log, *args, **kwargs): def on_epoch_end(self, epoch, log, *args, **kwargs):
{{ if .HeadId }}
requests.get(f'http://localhost:8000//model/head/epoch/update?epoch={epoch + 1}&accuracy={log["accuracy"]}&head_id={{.HeadId}}')
{{ else }}
requests.get(f'http://localhost:8000/model/epoch/update?model_id={{.Model.Id}}&epoch={epoch + 1}&accuracy={log["accuracy"]}&definition={{.DefId}}') requests.get(f'http://localhost:8000/model/epoch/update?model_id={{.Model.Id}}&epoch={epoch + 1}&accuracy={log["accuracy"]}&definition={{.DefId}}')
{{end}}
DATA_DIR = "{{ .DataDir }}" DATA_DIR = "{{ .DataDir }}"