more worker on go-runner

This commit is contained in:
Andre Henriques 2024-05-07 01:16:38 +01:00
parent b1e4211e6a
commit 29846012e7
17 changed files with 151 additions and 3249 deletions

4
go.mod
View File

@ -9,10 +9,11 @@ require (
github.com/google/uuid v1.6.0 github.com/google/uuid v1.6.0
github.com/lib/pq v1.10.9 github.com/lib/pq v1.10.9
golang.org/x/crypto v0.19.0 golang.org/x/crypto v0.19.0
github.com/BurntSushi/toml v1.3.2
github.com/goccy/go-json v0.10.2
) )
require ( require (
github.com/BurntSushi/toml v1.3.2 // indirect
github.com/aymanbagabas/go-osc52/v2 v2.0.1 // indirect github.com/aymanbagabas/go-osc52/v2 v2.0.1 // indirect
github.com/charmbracelet/lipgloss v0.9.1 // indirect github.com/charmbracelet/lipgloss v0.9.1 // indirect
github.com/gabriel-vasile/mimetype v1.4.3 // indirect github.com/gabriel-vasile/mimetype v1.4.3 // indirect
@ -20,7 +21,6 @@ require (
github.com/go-playground/locales v0.14.1 // indirect github.com/go-playground/locales v0.14.1 // indirect
github.com/go-playground/universal-translator v0.18.1 // indirect github.com/go-playground/universal-translator v0.18.1 // indirect
github.com/go-playground/validator/v10 v10.19.0 // indirect github.com/go-playground/validator/v10 v10.19.0 // indirect
github.com/goccy/go-json v0.10.2 // indirect
github.com/jackc/pgpassfile v1.0.0 // indirect github.com/jackc/pgpassfile v1.0.0 // indirect
github.com/jackc/pgservicefile v0.0.0-20221227161230-091c0ba34f0a // indirect github.com/jackc/pgservicefile v0.0.0-20221227161230-091c0ba34f0a // indirect
github.com/jackc/pgx v3.6.2+incompatible // indirect github.com/jackc/pgx v3.6.2+incompatible // indirect

View File

@ -87,9 +87,9 @@ func (d Definition) GetLayers(db db.Db, filter string, args ...any) (layer []*La
return GetDbMultitple[Layer](db, "model_definition_layer as mdl where mdl.def_id=$1 "+filter, args...) return GetDbMultitple[Layer](db, "model_definition_layer as mdl where mdl.def_id=$1 "+filter, args...)
} }
func (d *Definition) UpdateAfterEpoch(db db.Db, accuracy float64) (err error) { func (d *Definition) UpdateAfterEpoch(db db.Db, accuracy float64, epoch int) (err error) {
d.Accuracy = accuracy d.Accuracy = accuracy
d.Epoch += 1 d.Epoch += epoch
_, err = db.Exec("update model_definition set epoch=$1, accuracy=$2 where id=$3", d.Epoch, d.Accuracy, d.Id) _, err = db.Exec("update model_definition set epoch=$1, accuracy=$2 where id=$3", d.Epoch, d.Accuracy, d.Id)
return return
} }

View File

@ -1,6 +1,8 @@
package tasks package tasks
import ( import (
"os"
"path"
"sync" "sync"
"time" "time"
@ -383,4 +385,149 @@ func handleRemoteRunner(x *Handle) {
Training: training_points, Training: training_points,
}) })
}) })
type RunnerTrainDefEpoch struct {
Id string `json:"id" validate:"required"`
TaskId string `json:"taskId" validate:"required"`
DefId string `json:"defId" validate:"required"`
Epoch int `json:"epoch" validate:"required"`
Accuracy float64 `json:"accuracy" validate:"required"`
}
PostAuthJson(x, "/tasks/runner/train/epoch", User_Normal, func(c *Context, dat *RunnerTrainDefEpoch) *Error {
_, error := verifyRunner(c, &JustId{Id: dat.Id})
if error != nil {
return error
}
task, error := verifyTask(x, c, &VerifyTask{
Id: dat.Id,
TaskId: dat.TaskId,
})
if error != nil {
return error
}
if task.TaskType != int(TASK_TYPE_TRAINING) {
c.Logger.Error("Task not is not the right type to get the definitions", "task type", task.TaskType)
return c.JsonBadRequest("Task is not the right type go get the definitions")
}
def, err := GetDefinition(c, dat.DefId)
if err != nil {
return c.E500M("Failed to get definition information", err)
}
err = def.UpdateAfterEpoch(c, dat.Accuracy, dat.Epoch)
if err != nil {
return c.E500M("Failed to update model", err)
}
return c.SendJSON("Ok")
})
PostAuthJson(x, "/task/runner/train/mark-failed", User_Normal, func(c *Context, dat *VerifyTask) *Error {
_, error := verifyRunner(c, &JustId{Id: dat.Id})
if error != nil {
return error
}
task, error := verifyTask(x, c, &VerifyTask{
Id: dat.Id,
TaskId: dat.TaskId,
})
if error != nil {
return error
}
if task.TaskType != int(TASK_TYPE_TRAINING) {
c.Logger.Error("Task not is not the right type to get the definitions", "task type", task.TaskType)
return c.JsonBadRequest("Task is not the right type go get the definitions")
}
_, err := c.Exec(
"update model_definition set status=$1 "+
"where model_id=$2 and status in ($3, $4)",
MODEL_DEFINITION_STATUS_CANCELD_TRAINING,
task.ModelId,
MODEL_DEFINITION_STATUS_TRAINING,
MODEL_DEFINITION_STATUS_PAUSED_TRAINING,
)
if err != nil {
return c.E500M("Failed to mark definition as failed", err)
}
return c.SendJSON("Ok")
})
PostAuthJson(x, "/task/runner/train/done", User_Normal, func(c *Context, dat *VerifyTask) *Error {
_, error := verifyRunner(c, &JustId{Id: dat.Id})
if error != nil {
return error
}
task, error := verifyTask(x, c, dat)
if error != nil {
return error
}
if task.TaskType != int(TASK_TYPE_TRAINING) {
c.Logger.Error("Task not is not the right type to get the definitions", "task type", task.TaskType)
return c.JsonBadRequest("Task is not the right type go get the definitions")
}
model, err := GetBaseModel(c, *task.ModelId)
if err != nil {
c.Logger.Error("Failed to get model", "err", err)
return c.E500M("Failed to get mode", err)
}
var def Definition
err = GetDBOnce(c, &def, "from model_definition as md where model_id=$1 and status=$2 order by accuracy desc limit 1;", task.ModelId, DEFINITION_STATUS_TRANIED)
if err == NotFoundError {
// TODO Make the Model status have a message
c.Logger.Error("All definitions failed to train!")
model.UpdateStatus(c, FAILED_TRAINING)
task.UpdateStatusLog(c, TASK_FAILED_RUNNING, "All definition failed to train!")
return c.SendJSON("Ok")
} else if err != nil {
model.UpdateStatus(c, FAILED_TRAINING)
task.UpdateStatusLog(c, TASK_FAILED_RUNNING, "Failed to get model definition")
return c.E500M("Failed to get model definition", err)
}
if err = def.UpdateStatus(c, DEFINITION_STATUS_READY); err != nil {
model.UpdateStatus(c, FAILED_TRAINING)
task.UpdateStatusLog(c, TASK_FAILED_RUNNING, "Failed to update model definition")
return c.E500M("Failed to update model definition", err)
}
to_delete, err := c.Query("select id from model_definition where status != $1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id)
if err != nil {
model.UpdateStatus(c, FAILED_TRAINING)
task.UpdateStatusLog(c, TASK_FAILED_RUNNING, "Failed to delete unsed definitions")
return c.E500M("Failed to delete unsed definitions", err)
}
defer to_delete.Close()
for to_delete.Next() {
var id string
if err = to_delete.Scan(&id); err != nil {
model.UpdateStatus(c, FAILED_TRAINING)
task.UpdateStatusLog(c, TASK_FAILED_RUNNING, "Failed to delete unsed definitions")
return c.E500M("Failed to delete unsed definitions", err)
}
os.RemoveAll(path.Join("savedData", model.Id, "defs", id))
}
// TODO Check if returning also works here
if _, err = c.Exec("delete from model_definition where status!=$1 and model_id=$2;", MODEL_DEFINITION_STATUS_READY, model.Id); err != nil {
model.UpdateStatus(c, FAILED_TRAINING)
task.UpdateStatusLog(c, TASK_FAILED_RUNNING, "Failed to delete unsed definitions")
return c.E500M("Failed to delete unsed definitions", err)
}
model.UpdateStatus(c, READY)
return c.SendJSON("Ok")
})
} }

1
runner/.gitignore vendored
View File

@ -1 +0,0 @@
target/

1936
runner/Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +0,0 @@
[package]
name = "runner"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
anyhow = "1.0.82"
serde = { version = "1.0.200", features = ["derive"] }
toml = "0.8.12"
reqwest = { version = "0.12", features = ["json"] }
tokio = { version = "1", features = ["full"] }
serde_json = "1.0.116"
serde_repr = "0.1"
tch = { version = "0.16.0", features = ["download-libtorch"] }
rand = "0.8.5"

View File

@ -1,12 +0,0 @@
FROM docker.io/nvidia/cuda:11.7.1-devel-ubuntu22.04
RUN apt-get update
RUN apt-get install -y curl
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
ENV PATH="$PATH:/root/.cargo/bin"
RUN rustup toolchain install stable
RUN apt-get install -y pkg-config libssl-dev
WORKDIR /app

View File

@ -1,3 +0,0 @@
hostname = "https://testing.andr3h3nriqu3s.com/api"
token = "d2bc41e8293937bcd9397870c98f97acc9603f742924b518e193cd1013e45d57897aa302b364001c72b458afcfb34239dfaf38a66b318e5cbc973eea"
data_path = "/home/andr3/Documents/my-repos/fyp"

View File

@ -1 +0,0 @@
id = "a7cec9e9-1d05-4633-8bc5-6faabe4fd5a3"

View File

@ -1,2 +0,0 @@
#!/bin/bash
podman run --rm --network host --gpus all -ti -v $(pwd):/app -e "TERM=xterm-256color" fyp-runner bash

View File

@ -1,115 +0,0 @@
use crate::{model::DataPoint, settings::ConfigFile};
use std::{path::Path, sync::Arc};
use tch::Tensor;
pub struct DataLoader {
pub batch_size: i64,
pub len: usize,
pub inputs: Vec<Tensor>,
pub labels: Vec<Tensor>,
pub pos: usize,
}
fn import_image(
item: &DataPoint,
base_path: &Path,
classes_len: i64,
inputs: &mut Vec<Tensor>,
labels: &mut Vec<Tensor>,
) {
inputs.push(
tch::vision::image::load(base_path.join(&item.path))
.ok()
.unwrap()
.unsqueeze(0),
);
if item.class >= 0 {
let t = tch::Tensor::from_slice(&[item.class]).onehot(classes_len as i64);
labels.push(t);
} else {
labels.push(tch::Tensor::zeros(
[1, classes_len as i64],
(tch::Kind::Float, tch::Device::Cpu),
))
}
}
impl DataLoader {
pub fn new(
config: Arc<ConfigFile>,
data: Vec<DataPoint>,
classes_len: i64,
batch_size: i64,
) -> DataLoader {
let len: f64 = (data.len() as f64) / (batch_size as f64);
let min_len: i64 = len.floor() as i64;
let max_len: i64 = len.ceil() as i64;
println!(
"Creating dataloader data len: {} len: {} min_len: {} max_len:{}",
data.len(),
len,
min_len,
max_len
);
let base_path = Path::new(&config.data_path);
let mut inputs: Vec<Tensor> = Vec::new();
let mut all_labels: Vec<Tensor> = Vec::new();
for batch in 0..min_len {
let mut batch_acc: Vec<Tensor> = Vec::new();
let mut labels: Vec<Tensor> = Vec::new();
for image in 0..batch_size {
let i: usize = (batch * batch_size + image).try_into().unwrap();
let item = &data[i];
import_image(item, base_path, classes_len, &mut batch_acc, &mut labels)
}
inputs.push(tch::Tensor::cat(&batch_acc[0..], 0));
all_labels.push(tch::Tensor::cat(&labels[0..], 0));
}
// Import the last batch that has irregular sizing
if min_len != max_len {
let mut batch_acc: Vec<Tensor> = Vec::new();
let mut labels: Vec<Tensor> = Vec::new();
for image in 0..(data.len() - (batch_size * min_len) as usize) {
let i: usize = (min_len * batch_size + (image as i64)) as usize;
let item = &data[i];
import_image(item, base_path, classes_len, &mut batch_acc, &mut labels);
}
inputs.push(tch::Tensor::cat(&batch_acc[0..], 0));
all_labels.push(tch::Tensor::cat(&labels[0..], 0));
}
println!("ins shape: {:?}", inputs[0].size());
return DataLoader {
batch_size,
inputs,
labels: all_labels,
len: max_len as usize,
pos: 0,
};
}
pub fn restart(self: &mut DataLoader) {
self.pos = 0;
}
pub fn next(self: &mut DataLoader) -> Option<(Tensor, Tensor)> {
if self.pos >= self.len {
return None;
}
let input = self.inputs[self.pos].empty_like();
self.inputs[self.pos] = self.inputs[self.pos].clone(&input);
let label = self.labels[self.pos].empty_like();
self.labels[self.pos] = self.labels[self.pos].clone(&label);
self.pos += 1;
return Some((input, label));
}
}

View File

@ -1,206 +0,0 @@
mod dataloader;
mod model;
mod settings;
mod tasks;
mod training;
mod types;
use crate::settings::*;
use crate::tasks::{fail_task, Task, TaskType};
use crate::training::handle_train;
use anyhow::{bail, Result};
use reqwest::StatusCode;
use serde_json::json;
use std::{fs, process::exit, sync::Arc, time::Duration};
enum ResultAlive {
Ok,
Error,
NotInit,
}
async fn send_keep_alive_message(
config: Arc<ConfigFile>,
runner_data: Arc<RunnerData>,
) -> ResultAlive {
let client = reqwest::Client::new();
let to_send = json!({
"id": runner_data.id,
});
let resp = client
.post(format!("{}/tasks/runner/beat", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await;
if resp.is_err() {
return ResultAlive::Error;
}
let resp = resp.ok();
if resp.is_none() {
return ResultAlive::Error;
}
let resp = resp.unwrap();
// TODO see if the message is related to not being inited
if resp.status() != 200 {
println!("Could not connect with the status");
return ResultAlive::Error;
}
ResultAlive::Ok
}
async fn keep_alive(config: Arc<ConfigFile>, runner_data: Arc<RunnerData>) -> Result<()> {
let mut failed = 0;
loop {
match send_keep_alive_message(config.clone(), runner_data.clone()).await {
ResultAlive::Error => failed += 1,
ResultAlive::NotInit => {
println!("Runner not inited! Restarting!");
exit(1)
}
ResultAlive::Ok => failed = 0,
}
// TODO move to config
if failed > 20 {
println!("Failed to connect to API! More than 20 times in a row stoping");
exit(1)
}
tokio::time::sleep(Duration::from_secs(1)).await;
}
}
async fn handle_task(
task: Task,
config: Arc<ConfigFile>,
runner_data: Arc<RunnerData>,
) -> Result<()> {
let res = match task.task_type {
TaskType::Training => handle_train(&task, config.clone(), runner_data.clone()).await,
_ => {
println!("Do not know how to handle this task #{:?}", task);
bail!("Failed")
}
};
if res.is_err() {
println!("task failed #{:?}", res);
fail_task(
&task,
config,
runner_data,
"Do not know how to handle this kind of task",
)
.await?
}
Ok(())
}
#[tokio::main]
async fn main() -> Result<()> {
// Load config file
let config_data = fs::read_to_string("./config.toml")?;
let mut config: ConfigFile = toml::from_str(&config_data)?;
let client = reqwest::Client::new();
if config.config_path == None {
config.config_path = Some(String::from("./data.toml"))
}
let runner_data: RunnerData = load_runner_data(&config).await?;
let to_send = json!({
"id": runner_data.id,
});
// Inform the server that the runner is available
let resp = client
.post(format!("{}/tasks/runner/init", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await?;
if resp.status() != 200 {
println!(
"Could not connect with the api: status {} body {}",
resp.status(),
resp.text().await?
);
return Ok(());
}
let res = resp.json::<String>().await?;
if res != "Ok" {
print!("Unexpected problem: {}", res);
return Ok(());
}
let config = Arc::new(config);
let runner_data = Arc::new(runner_data);
let config_alive = config.clone();
let runner_data_alive = runner_data.clone();
std::thread::spawn(move || keep_alive(config_alive.clone(), runner_data_alive.clone()));
println!("Started main loop");
loop {
//TODO move time to config
tokio::time::sleep(Duration::from_secs(1)).await;
let to_send = json!({ "id": runner_data.id });
let resp = client
.post(format!("{}/tasks/runner/active", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await;
if resp.is_err() || resp.as_ref().ok().is_none() {
println!("Failed to get info from server {:?}", resp);
continue;
}
let resp = resp?;
match resp.status() {
// No active task
StatusCode::NOT_FOUND => (),
StatusCode::OK => {
println!("Found task!");
let task: Result<Task, reqwest::Error> = resp.json().await;
if task.is_err() || task.as_ref().ok().is_none() {
println!("Failed to resolve the json {:?}", task);
continue;
}
let task = task?;
let res = handle_task(task, config.clone(), runner_data.clone()).await;
if res.is_err() || res.as_ref().ok().is_none() {
println!("Failed to run the task");
}
_ = res;
()
}
_ => {
println!("Unexpected error #{:?}", resp);
exit(1)
}
}
}
}

View File

@ -1,117 +0,0 @@
use anyhow::bail;
use serde::{Deserialize, Serialize};
use serde_repr::{Deserialize_repr, Serialize_repr};
use tch::{
nn::{self, Module},
Device,
};
#[derive(Debug)]
pub struct Model {
pub vs: nn::VarStore,
pub seq: nn::Sequential,
pub layers: Vec<Layer>,
}
#[derive(Debug, Clone, Copy, Serialize_repr, Deserialize_repr)]
#[repr(i8)]
pub enum LayerType {
Input = 1,
Dense = 2,
Flatten = 3,
SimpleBlock = 4,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct Layer {
pub id: String,
pub definition_id: String,
pub layer_order: String,
pub layer_type: LayerType,
pub shape: String,
pub exp_type: String,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct DataPoint {
pub class: i64,
pub path: String,
}
pub fn build_model(layers: Vec<Layer>, last_linear_size: i64, add_sigmoid: bool) -> Model {
let vs = nn::VarStore::new(Device::Cuda(0));
let mut seq = nn::seq();
let mut last_linear_size = last_linear_size;
let mut last_linear_conv: Vec<i64> = Vec::new();
for layer in layers.iter() {
match layer.layer_type {
LayerType::Input => {
last_linear_conv = serde_json::from_str(&layer.shape).ok().unwrap();
println!("Layer: Input, In: {:?}", last_linear_conv);
}
LayerType::Dense => {
let shape: Vec<i64> = serde_json::from_str(&layer.shape).ok().unwrap();
println!("Layer: Dense, In: {}, Out: {}", last_linear_size, shape[0]);
seq = seq
.add(nn::linear(
&vs.root(),
last_linear_size,
shape[0],
Default::default(),
))
.add_fn(|xs| xs.relu());
last_linear_size = shape[0];
}
LayerType::Flatten => {
seq = seq.add_fn(|xs| xs.flatten(1, -1));
last_linear_size = 1;
for i in &last_linear_conv {
last_linear_size *= i;
}
println!(
"Layer: flatten, In: {:?}, Out: {}",
last_linear_conv, last_linear_size
)
}
LayerType::SimpleBlock => {
let new_last_linear_conv =
vec![128, last_linear_conv[1] / 2, last_linear_conv[2] / 2];
println!(
"Layer: block, In: {:?}, Put: {:?}",
last_linear_conv, new_last_linear_conv,
);
let out_size = vec![new_last_linear_conv[1], new_last_linear_conv[2]];
seq = seq
.add(nn::conv2d(
&vs.root(),
last_linear_conv[0],
128,
3,
nn::ConvConfig::default(),
))
.add_fn(|xs| xs.relu())
.add(nn::conv2d(
&vs.root(),
128,
128,
3,
nn::ConvConfig::default(),
))
.add_fn(|xs| xs.relu())
.add_fn(move |xs| xs.adaptive_avg_pool2d([out_size[1], out_size[1]]))
.add_fn(|xs| xs.leaky_relu());
//m_layers = append(m_layers, NewSimpleBlock(vs, lastLinearConv[0]))
last_linear_conv = new_last_linear_conv;
}
}
}
if add_sigmoid {
seq = seq.add_fn(|xs| xs.sigmoid());
}
return Model { vs, layers, seq };
}

View File

@ -1,57 +0,0 @@
use anyhow::{bail, Result};
use serde::{Deserialize, Serialize};
use serde_json::json;
use std::{fs, path};
#[derive(Deserialize)]
pub struct ConfigFile {
// Hostname to connect with the api
pub hostname: String,
// Token used in the api to authenticate
pub token: String,
// Path to where to store some generated configuration values
// defaults to ./data.toml
pub config_path: Option<String>,
// Data Path
// Path to where the data is mounted
pub data_path: String,
}
#[derive(Deserialize, Serialize)]
pub struct RunnerData {
pub id: String,
}
pub async fn load_runner_data(config: &ConfigFile) -> Result<RunnerData> {
let data_path = config.config_path.as_ref().unwrap();
let data_path = path::Path::new(&*data_path);
if data_path.exists() {
let runner_data = fs::read_to_string(data_path)?;
Ok(toml::from_str(&runner_data)?)
} else {
let client = reqwest::Client::new();
let to_send = json!({
"token": config.token,
"type": 1,
});
let register_resp = client
.post(format!("{}/tasks/runner/register", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await?;
if register_resp.status() != 200 {
bail!(format!("Could not create runner {:#?}", register_resp));
}
let runner_data: RunnerData = register_resp.json().await?;
fs::write(data_path, toml::to_string(&runner_data)?)
.expect("Faield to save data for runner");
Ok(runner_data)
}
}

View File

@ -1,90 +0,0 @@
use std::sync::Arc;
use anyhow::{bail, Result};
use serde::Deserialize;
use serde_json::json;
use serde_repr::Deserialize_repr;
use crate::{ConfigFile, RunnerData};
#[derive(Clone, Copy, Deserialize_repr, Debug)]
#[repr(i8)]
pub enum TaskStatus {
FailedRunning = -2,
FailedCreation = -1,
Preparing = 0,
Todo = 1,
PickedUp = 2,
Running = 3,
Done = 4,
}
#[derive(Clone, Copy, Deserialize_repr, Debug)]
#[repr(i8)]
pub enum TaskType {
Classification = 1,
Training = 2,
Retraining = 3,
DeleteUser = 4,
}
#[derive(Deserialize, Debug)]
pub struct Task {
pub id: String,
pub user_id: String,
pub model_id: String,
pub status: TaskStatus,
pub status_message: String,
pub user_confirmed: i8,
pub compacted: i8,
#[serde(alias = "type")]
pub task_type: TaskType,
pub extra_task_info: String,
pub result: String,
pub created: String,
}
pub async fn fail_task(
task: &Task,
config: Arc<ConfigFile>,
runner_data: Arc<RunnerData>,
reason: &str,
) -> Result<()> {
println!("Marking Task as failed");
let client = reqwest::Client::new();
let to_send = json!({
"id": runner_data.id,
"taskId": task.id,
"reason": reason
});
let resp = client
.post(format!("{}/tasks/runner/fail", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await?;
if resp.status() != 200 {
println!("Failed to update status of task");
bail!("Failed to update status of task");
}
Ok(())
}
impl Task {
pub async fn fail(
self: &mut Task,
config: Arc<ConfigFile>,
runner_data: Arc<RunnerData>,
reason: &str,
) -> Result<()> {
fail_task(self, config, runner_data, reason).await?;
self.status = TaskStatus::FailedRunning;
self.status_message = reason.to_string();
Ok(())
}
}

View File

@ -1,599 +0,0 @@
use crate::{
dataloader::DataLoader,
model::{self, build_model},
settings::{ConfigFile, RunnerData},
tasks::{fail_task, Task},
types::{DataPointRequest, Definition, ModelClass},
};
use std::{
io::{self, Write},
sync::Arc,
};
use anyhow::Result;
use rand::{seq::SliceRandom, thread_rng};
use serde_json::json;
use tch::{
nn::{self, Module, OptimizerConfig},
Cuda, Tensor,
};
pub async fn handle_train(
task: &Task,
config: Arc<ConfigFile>,
runner_data: Arc<RunnerData>,
) -> Result<()> {
let client = reqwest::Client::new();
println!("Preparing to train a model");
let to_send = json!({
"id": runner_data.id,
"taskId": task.id,
});
let mut defs: Vec<Definition> = client
.post(format!("{}/tasks/runner/train/defs", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await?
.json()
.await?;
if defs.len() == 0 {
println!("No defs found");
fail_task(task, config, runner_data, "No definitions found").await?;
return Ok(());
}
let classes: Vec<ModelClass> = client
.post(format!("{}/tasks/runner/train/classes", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await?
.json()
.await?;
let data: DataPointRequest = client
.post(format!("{}/tasks/runner/train/datapoints", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await?
.json()
.await?;
let mut testing = data.testing;
testing.shuffle(&mut thread_rng());
let mut data_loader = DataLoader::new(config.clone(), testing, classes.len() as i64, 64);
// TODO make this a vec
let mut model: Option<model::Model> = None;
loop {
let config = config.clone();
let runner_data = runner_data.clone();
let mut to_remove: Vec<usize> = Vec::new();
let mut def_iter = defs.iter_mut();
let mut i: usize = 0;
while let Some(def) = def_iter.next() {
def.updateStatus(
task,
config.clone(),
runner_data.clone(),
crate::types::DefinitionStatus::Training,
)
.await?;
let model_err = train_definition(
def,
&mut data_loader,
model,
config.clone(),
runner_data.clone(),
&task,
)
.await;
if model_err.is_err() {
println!("Failed to create model {:?}", model_err);
model = None;
to_remove.push(i);
continue;
}
model = model_err?;
i += 1;
}
defs = defs
.into_iter()
.enumerate()
.filter(|&(i, _)| to_remove.iter().any(|b| *b == i))
.map(|(_, e)| e)
.collect();
break;
}
fail_task(task, config, runner_data, "TODO").await?;
Ok(())
/*
for {
// Keep track of definitions that did not train fast enough
var toRemove ToRemoveList = []int{}
for i, def := range definitions {
accuracy, ml_model, err := trainDefinition(c, model, def, models[def.Id], classes)
if err != nil {
log.Error("Failed to train definition!Err:", "err", err)
def.UpdateStatus(c, DEFINITION_STATUS_FAILED_TRAINING)
toRemove = append(toRemove, i)
continue
}
models[def.Id] = ml_model
if accuracy >= float64(def.TargetAccuracy) {
log.Info("Found a definition that reaches target_accuracy!")
_, err = db.Exec("update model_definition set accuracy=$1, status=$2, epoch=$3 where id=$4", accuracy, DEFINITION_STATUS_TRANIED, def.Epoch, def.Id)
if err != nil {
log.Error("Failed to train definition!Err:\n", "err", err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return err
}
_, err = db.Exec("update model_definition set status=$1 where id!=$2 and model_id=$3 and status!=$4", DEFINITION_STATUS_CANCELD_TRAINING, def.Id, model.Id, DEFINITION_STATUS_FAILED_TRAINING)
if err != nil {
log.Error("Failed to train definition!Err:\n", "err", err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return err
}
finished = true
break
}
if def.Epoch > MAX_EPOCH {
fmt.Printf("Failed to train definition! Accuracy less %f < %d\n", accuracy, def.TargetAccuracy)
def.UpdateStatus(c, DEFINITION_STATUS_FAILED_TRAINING)
toRemove = append(toRemove, i)
continue
}
_, err = db.Exec("update model_definition set accuracy=$1, epoch=$2, status=$3 where id=$4", accuracy, def.Epoch, DEFINITION_STATUS_PAUSED_TRAINING, def.Id)
if err != nil {
log.Error("Failed to train definition!Err:\n", "err", err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return err
}
}
if finished {
break
}
sort.Sort(sort.Reverse(toRemove))
log.Info("Round done", "toRemove", toRemove)
for _, n := range toRemove {
// Clean up unsed models
models[definitions[n].Id] = nil
definitions = remove(definitions, n)
}
len_def := len(definitions)
if len_def == 0 {
break
}
if len_def == 1 {
continue
}
sort.Sort(sort.Reverse(definitions))
acc := definitions[0].Accuracy - 20.0
log.Info("Training models, Highest acc", "acc", definitions[0].Accuracy, "mod_acc", acc)
toRemove = []int{}
for i, def := range definitions {
if def.Accuracy < acc {
toRemove = append(toRemove, i)
}
}
log.Info("Removing due to accuracy", "toRemove", toRemove)
sort.Sort(sort.Reverse(toRemove))
for _, n := range toRemove {
log.Warn("Removing definition not fast enough learning", "n", n)
definitions[n].UpdateStatus(c, DEFINITION_STATUS_FAILED_TRAINING)
models[definitions[n].Id] = nil
definitions = remove(definitions, n)
}
}
var def Definition
err = GetDBOnce(c, &def, "model_definition as md where md.model_id=$1 and md.status=$2 order by md.accuracy desc limit 1;", model.Id, DEFINITION_STATUS_TRANIED)
if err != nil {
if err == NotFoundError {
log.Error("All definitions failed to train!")
} else {
log.Error("DB: failed to read definition", "err", err)
}
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return
}
if err = def.UpdateStatus(c, DEFINITION_STATUS_READY); err != nil {
log.Error("Failed to update model definition", "err", err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return
}
to_delete, err := db.Query("select id from model_definition where status != $1 and model_id=$2", DEFINITION_STATUS_READY, model.Id)
if err != nil {
log.Error("Failed to select model_definition to delete")
log.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return
}
defer to_delete.Close()
for to_delete.Next() {
var id string
if err = to_delete.Scan(&id); err != nil {
log.Error("Failed to scan the id of a model_definition to delete", "err", err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return
}
os.RemoveAll(path.Join("savedData", model.Id, "defs", id))
}
// TODO Check if returning also works here
if _, err = db.Exec("delete from model_definition where status!=$1 and model_id=$2;", DEFINITION_STATUS_READY, model.Id); err != nil {
log.Error("Failed to delete model_definition")
log.Error(err)
ModelUpdateStatus(c, model.Id, FAILED_TRAINING)
return
}
ModelUpdateStatus(c, model.Id, READY)
return
*/
}
async fn train_definition(
def: &Definition,
data_loader: &mut DataLoader,
model: Option<model::Model>,
config: Arc<ConfigFile>,
runner_data: Arc<RunnerData>,
task: &Task,
) -> Result<Option<model::Model>> {
let client = reqwest::Client::new();
println!("About to start training definition");
let mut accuracy = 0;
let model = model.unwrap_or({
let layers: Vec<model::Layer> = client
.post(format!("{}/tasks/runner/train/def/layers", config.hostname))
.header("token", &config.token)
.body(
json!({
"id": runner_data.id,
"taskId": task.id,
"defId": def.id,
})
.to_string(),
)
.send()
.await?
.json()
.await?;
build_model(layers, 0, true)
});
// TODO CUDA
// get device
// Move model to cuda
let mut opt = nn::Adam::default().build(&model.vs, 1e-3)?;
let mut last_acc = 0.0;
for epoch in 1..40 {
data_loader.restart();
let mut mean_loss: f64 = 0.0;
let mut mean_acc: f64 = 0.0;
while let Some((inputs, labels)) = data_loader.next() {
let inputs = inputs
.to_kind(tch::Kind::Float)
.to_device(tch::Device::Cuda(0));
let labels = labels
.to_kind(tch::Kind::Float)
.to_device(tch::Device::Cuda(0));
let out = model.seq.forward(&inputs);
let weight: Option<Tensor> = None;
let loss = out.binary_cross_entropy(&labels, weight, tch::Reduction::Mean);
opt.backward_step(&loss);
mean_loss += loss
.to_device(tch::Device::Cpu)
.unsqueeze(0)
.double_value(&[0]);
let out = out.to_device(tch::Device::Cpu);
let test = out.empty_like();
_ = out.clone(&test);
let out = test.argmax(1, true);
let mut labels = labels.to_device(tch::Device::Cpu);
labels = labels.unsqueeze(-1);
let size = out.size()[0];
let mut acc = 0;
for i in 0..size {
let res = out.double_value(&[i]);
let exp = labels.double_value(&[i, res as i64]);
if exp == 1.0 {
acc += 1;
}
}
mean_acc += acc as f64 / size as f64;
last_acc = acc as f64 / size as f64;
}
print!(
"\repoch: {} loss: {} acc: {} l acc: {} ",
epoch,
mean_loss / data_loader.len as f64,
mean_acc / data_loader.len as f64,
last_acc
);
io::stdout().flush().expect("Unable to flush stdout");
}
println!("\nlast acc: {}", last_acc);
return Ok(Some(model));
/*
opt, err := my_nn.DefaultAdamConfig().Build(model.Vs, 0.001)
if err != nil {
return
}
for epoch := 0; epoch < EPOCH_PER_RUN; epoch++ {
var trainIter *torch.Iter2
trainIter, err = ds.TrainIter(32)
if err != nil {
return
}
// trainIter.ToDevice(device)
log.Info("epoch", "epoch", epoch)
var trainLoss float64 = 0
var trainCorrect float64 = 0
ok := true
for ok {
var item torch.Iter2Item
var loss *torch.Tensor
item, ok = trainIter.Next()
if !ok {
continue
}
data := item.Data
data, err = data.ToDevice(device, gotch.Float, false, true, false)
if err != nil {
return
}
var size []int64
size, err = data.Size()
if err != nil {
return
}
var zeros *torch.Tensor
zeros, err = torch.Zeros(size, gotch.Float, device)
if err != nil {
return
}
data, err = zeros.Add(data, true)
if err != nil {
return
}
log.Info("\n\nhere 1, data\n\n", "retains", data.MustRetainsGrad(false), "requires", data.MustRequiresGrad())
data, err = data.SetRequiresGrad(true, false)
if err != nil {
return
}
log.Info("\n\nhere 2, data\n\n", "retains", data.MustRetainsGrad(false), "requires", data.MustRequiresGrad())
err = data.RetainGrad(false)
if err != nil {
return
}
log.Info("\n\nhere 2, data\n\n", "retains", data.MustRetainsGrad(false), "requires", data.MustRequiresGrad())
pred := model.ForwardT(data, true)
pred, err = pred.SetRequiresGrad(true, true)
if err != nil {
return
}
err = pred.RetainGrad(false)
if err != nil {
return
}
label := item.Label
label, err = label.ToDevice(device, gotch.Float, false, true, false)
if err != nil {
return
}
label, err = label.SetRequiresGrad(true, true)
if err != nil {
return
}
err = label.RetainGrad(false)
if err != nil {
return
}
// Calculate loss
loss, err = pred.BinaryCrossEntropyWithLogits(label, &torch.Tensor{}, &torch.Tensor{}, 2, false)
if err != nil {
return
}
loss, err = loss.SetRequiresGrad(true, false)
if err != nil {
return
}
err = loss.RetainGrad(false)
if err != nil {
return
}
err = opt.ZeroGrad()
if err != nil {
return
}
err = loss.Backward()
if err != nil {
return
}
log.Info("pred grad", "pred", pred.MustGrad(false).MustMax(false).Float64Values())
log.Info("pred grad", "outs", label.MustGrad(false).MustMax(false).Float64Values())
log.Info("pred grad", "data", data.MustGrad(false).MustMax(false).Float64Values(), "lol", data.MustRetainsGrad(false))
vars := model.Vs.Variables()
for k, v := range vars {
log.Info("[grad check]", "k", k, "grad", v.MustGrad(false).MustMax(false).Float64Values(), "lol", v.MustRetainsGrad(false))
}
model.Debug()
err = opt.Step()
if err != nil {
return
}
trainLoss = loss.Float64Values()[0]
// Calculate accuracy
/ *var p_pred, p_labels *torch.Tensor
p_pred, err = pred.Argmax([]int64{1}, true, false)
if err != nil {
return
}
p_labels, err = item.Label.Argmax([]int64{1}, true, false)
if err != nil {
return
}
floats := p_pred.Float64Values()
floats_labels := p_labels.Float64Values()
for i := range floats {
if floats[i] == floats_labels[i] {
trainCorrect += 1
}
} * /
panic("fornow")
}
//v := []float64{}
log.Info("model training epoch done loss", "loss", trainLoss, "correct", trainCorrect, "out", ds.TrainImagesSize, "accuracy", trainCorrect/float64(ds.TrainImagesSize))
/ *correct := int64(0)
//torch.NoGrad(func() {
ok = true
testIter := ds.TestIter(64)
for ok {
var item torch.Iter2Item
item, ok = testIter.Next()
if !ok {
continue
}
output := model.Forward(item.Data)
var pred, labels *torch.Tensor
pred, err = output.Argmax([]int64{1}, true, false)
if err != nil {
return
}
labels, err = item.Label.Argmax([]int64{1}, true, false)
if err != nil {
return
}
floats := pred.Float64Values()
floats_labels := labels.Float64Values()
for i := range floats {
if floats[i] == floats_labels[i] {
correct += 1
}
}
}
accuracy = float64(correct) / float64(ds.TestImagesSize)
log.Info("Eval accuracy", "accuracy", accuracy)
err = def.UpdateAfterEpoch(db, accuracy*100)
if err != nil {
return
}* /
//})
}
result_path := path.Join(getDir(), "savedData", m.Id, "defs", def.Id)
err = os.MkdirAll(result_path, os.ModePerm)
if err != nil {
return
}
err = my_torch.SaveModel(model, path.Join(result_path, "model.dat"))
if err != nil {
return
}
log.Info("Model finished training!", "accuracy", accuracy)
return
*/
}

View File

@ -1,89 +0,0 @@
use crate::{model, tasks::Task, ConfigFile, RunnerData};
use anyhow::{bail, Result};
use serde::Deserialize;
use serde_json::json;
use serde_repr::{Deserialize_repr, Serialize_repr};
use std::sync::Arc;
#[derive(Clone, Copy, Deserialize_repr, Serialize_repr, Debug)]
#[repr(i8)]
pub enum DefinitionStatus {
CanceldTraining = -4,
FailedTraining = -3,
PreInit = 1,
Init = 2,
Training = 3,
PausedTraining = 6,
Tranied = 4,
Ready = 5,
}
#[derive(Deserialize, Debug)]
pub struct Definition {
pub id: String,
pub model_id: String,
pub accuracy: f64,
pub target_accuracy: i64,
pub epoch: i64,
pub status: i64,
pub created: String,
pub epoch_progress: i64,
}
impl Definition {
pub async fn updateStatus(
self: &mut Definition,
task: &Task,
config: Arc<ConfigFile>,
runner_data: Arc<RunnerData>,
status: DefinitionStatus,
) -> Result<()> {
println!("Marking Task as faield");
let client = reqwest::Client::new();
let to_send = json!({
"id": runner_data.id,
"taskId": task.id,
"defId": self.id,
"status": status,
});
let resp = client
.post(format!("{}/tasks/runner/train/def/status", config.hostname))
.header("token", &config.token)
.body(to_send.to_string())
.send()
.await?;
if resp.status() != 200 {
println!("Failed to update status of task");
bail!("Failed to update status of task");
}
Ok(())
}
}
#[derive(Clone, Copy, Deserialize_repr, Debug)]
#[repr(i8)]
pub enum ModelClassStatus {
ToTrain = 1,
Training = 2,
Trained = 3,
}
#[derive(Deserialize, Debug)]
pub struct ModelClass {
pub id: String,
pub model_id: String,
pub name: String,
pub class_order: i64,
pub status: ModelClassStatus,
}
#[derive(Deserialize, Debug)]
pub struct DataPointRequest {
pub testing: Vec<model::DataPoint>,
pub training: Vec<model::DataPoint>,
}