chore: closes #21, #20

This commit is contained in:
Andre Henriques 2023-09-27 21:20:39 +01:00
parent eab788aabd
commit 194277297f
9 changed files with 465 additions and 94 deletions

View File

@ -86,6 +86,8 @@ func handleDelete(handle *Handle) {
case FAILED_PREPARING:
deleteModel(handle, id, w, c, model)
return nil
case READY:
fallthrough
case CONFIRM_PRE_TRAINING:
if CheckEmpty(f, "name") {

View File

@ -69,7 +69,6 @@ func handleEdit(handle *Handle) {
"Model": model,
}))
case CONFIRM_PRE_TRAINING:
cls, err := model_classes.ListClasses(handle.Db, id)
if err != nil {
return Error500(err)
@ -85,6 +84,10 @@ func handleEdit(handle *Handle) {
"Classes": cls,
"HasData": has_data,
}))
case READY:
LoadBasedOnAnswer(c.Mode, w, "/models/edit.html", c.AddMap(AnyMap{
"Model": model,
}))
case TRAINING:
fallthrough
case PREPARING_ZIP_FILE:

118
logic/models/run.go Normal file
View File

@ -0,0 +1,118 @@
package models
import (
"bytes"
"fmt"
"io"
"net/http"
"os"
"path"
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/utils"
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/utils"
tf "github.com/galeone/tensorflow/tensorflow/go"
tg "github.com/galeone/tfgo"
"github.com/galeone/tfgo/image"
)
func handleRun(handle *Handle) {
handle.Post("/models/run", func(w http.ResponseWriter, r *http.Request, c *Context) *Error {
if !CheckAuthLevel(1, w, r, c) {
return nil
}
if c.Mode == JSON {
// TODO improve message
return ErrorCode(nil, 400, nil)
}
read_form, err := r.MultipartReader()
if err != nil {
// TODO improve message
return ErrorCode(nil, 400, nil)
}
var id string
var file []byte
for {
part, err_part := read_form.NextPart()
if err_part == io.EOF {
break
} else if err_part != nil {
return &Error{Code: http.StatusBadRequest}
}
if part.FormName() == "id" {
buf := new(bytes.Buffer)
buf.ReadFrom(part)
id = buf.String()
}
if part.FormName() == "file" {
buf := new(bytes.Buffer)
buf.ReadFrom(part)
file = buf.Bytes()
}
}
model, err := GetBaseModel(handle.Db, id)
if err == ModelNotFoundError {
return ErrorCode(nil, http.StatusNotFound, AnyMap{
"NotFoundMessage": "Model not found",
"GoBackLink": "/models",
})
} else if err != nil {
return Error500(err)
}
if model.Status != READY {
// TODO improve this
return ErrorCode(nil, 400, c.AddMap(nil))
}
definitions_rows, err := handle.Db.Query("select id from model_definition where model_id=$1;", model.Id)
if !definitions_rows.Next() {
// TODO improve this
return ErrorCode(nil, 400, c.AddMap(nil))
}
defer definitions_rows.Close()
if !definitions_rows.Next() {
return Error500(nil)
}
var def_id string
if err = definitions_rows.Scan(&def_id); err != nil {
return Error500(nil)
}
// TODO create a database table with tasks
run_path := path.Join("/tmp", model.Id, "runs")
os.MkdirAll(run_path, os.ModePerm)
img_file, err := os.Create(path.Join(run_path, "img.png"))
if err != nil {
return Error500(nil)
}
defer img_file.Close()
img_file.Write(file)
root := tg.NewRoot()
tf_img := image.Read(root, path.Join(run_path, "img.png"), 1)
tf_model := tg.LoadModel(path.Join("savedData", model.Id, "defs", def_id, "model"), []string{"serve"}, nil)
tf_img_tensor, err := tf.NewTensor(tf_img.Value())
if err != nil {
return Error500(err)
}
results := tf_model.Exec([]tf.Output{
tf_model.Op("StatefulPartitionedCall", 0),
}, map[tf.Output]*tf.Tensor{
tf_model.Op("serving_default_inputs_input", 0): tf_img_tensor,
})
predictions := results[0]
fmt.Println(predictions.Value())
return nil
})
}

View File

@ -2,6 +2,8 @@ package models_train
import (
"net/http"
"os"
"path"
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/utils"
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/utils"
@ -40,11 +42,13 @@ func handleRest(handle *Handle) {
return Error500(err)
}
if model.Status != FAILED_PREPARING_TRAINING {
if model.Status != FAILED_PREPARING_TRAINING && model.Status != FAILED_TRAINING {
// TODO improve response
return ErrorCode(nil, 400, c.AddMap(nil))
}
os.RemoveAll(path.Join("savedData", model.Id, "defs"))
_, err = handle.Db.Exec("delete from model_definition where model_id=$1", model.Id)
if err != nil {
// TODO improve response

View File

@ -4,7 +4,13 @@ import (
"database/sql"
"errors"
"fmt"
"io"
"net/http"
"os"
"os/exec"
"path"
"strconv"
"text/template"
model_classes "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/classes"
. "git.andr3h3nriqu3s.com/andr3/fyp/logic/models/utils"
@ -12,84 +18,270 @@ import (
)
func MakeDefenition(db *sql.DB, model_id string, target_accuracy int) (id string, err error) {
id = ""
_, err = db.Exec("insert into model_definition (model_id, target_accuracy) values ($1, $2);", model_id, target_accuracy)
if err != nil {
return
}
id = ""
_, err = db.Exec("insert into model_definition (model_id, target_accuracy) values ($1, $2);", model_id, target_accuracy)
if err != nil {
return
}
rows, err := db.Query("select id from model_definition where model_id=$1 order by created_on DESC;", model_id)
if err != nil {
return
}
defer rows.Close()
rows, err := db.Query("select id from model_definition where model_id=$1 order by created_on DESC;", model_id)
if err != nil {
return
}
defer rows.Close()
if !rows.Next() {
return id, errors.New("Something wrong!")
}
if !rows.Next() {
return id, errors.New("Something wrong!")
}
err = rows.Scan(&id)
if err != nil {
return
}
err = rows.Scan(&id)
if err != nil {
return
}
return
return
}
type ModelDefinitionStatus int
const (
MODEL_DEFINITION_STATUS_FAILED_TRAINING = -3
MODEL_DEFINITION_STATUS_PRE_INIT ModelDefinitionStatus = 1
MODEL_DEFINITION_STATUS_INIT = 2
MODEL_DEFINITION_STATUS_TRAINING = 3
MODEL_DEFINITION_STATUS_TRANIED = 4
MODEL_DEFINITION_STATUS_READY = 5
MODEL_DEFINITION_STATUS_FAILED_TRAINING = -3
MODEL_DEFINITION_STATUS_PRE_INIT ModelDefinitionStatus = 1
MODEL_DEFINITION_STATUS_INIT = 2
MODEL_DEFINITION_STATUS_TRAINING = 3
MODEL_DEFINITION_STATUS_TRANIED = 4
MODEL_DEFINITION_STATUS_READY = 5
)
type LayerType int
const (
LAYER_INPUT LayerType = 1
LAYER_DENSE = 2
LAYER_FLATTEN = 3
)
func ModelDefinitionUpdateStatus(handle *Handle, id string, status ModelDefinitionStatus) (err error) {
_, err = handle.Db.Exec("update model_definition set status = $1 where id = $2", status, id)
return
return
}
func MakeLayer(db *sql.DB, def_id string, layer_order int, layer_type int, shape string) (err error) {
func MakeLayer(db *sql.DB, def_id string, layer_order int, layer_type LayerType, shape string) (err error) {
_, err = db.Exec("insert into model_definition_layer (def_id, layer_order, layer_type, shape) values ($1, $2, $3, $4)", def_id, layer_order, layer_type, shape)
return
}
func trainDefinition(handle *Handle, model_id string, definition_id string) (accuracy float64, err error) {
accuracy = 0
layers, err := handle.Db.Query("select layer_type, shape from model_definition_layer where def_id=$1 order by layer_order asc;", definition_id)
if err != nil {
return
}
defer layers.Close()
type layerrow struct {
LayerType int
Shape string
}
got := []layerrow{}
for layers.Next() {
var row = layerrow{}
if err = layers.Scan(&row.LayerType, &row.Shape); err != nil {
return
}
row.Shape = shapeToSize(row.Shape)
got = append(got, row)
}
// Generate run folder
run_path := path.Join("/tmp", model_id, "defs", definition_id)
err = os.MkdirAll(run_path, os.ModePerm)
if err != nil {
return
}
// Create python script
f, err := os.Create(path.Join(run_path, "run.py"))
if err != nil {
return
}
defer f.Close()
tmpl, err := template.New("python_model_template.py").ParseFiles("views/py/python_model_template.py")
if err != nil {
return
}
if err = tmpl.Execute(f, AnyMap{
"Layers": got,
"Size": got[0].Shape,
"DataDir": path.Join(getDir(), "savedData", model_id, "data", "training"),
}); err != nil {
return
}
// Run the command
if err = exec.Command("bash", "-c", fmt.Sprintf("cd %s && python run.py", run_path)).Run(); err != nil {
return
}
// Copy result around
result_path := path.Join("savedData", model_id, "defs", definition_id)
if err = os.MkdirAll(result_path, os.ModePerm); err != nil {
return
}
if err = exec.Command("cp", "-r", path.Join(run_path, "model"), path.Join(result_path, "model")).Run(); err != nil {
return
}
accuracy_file, err := os.Open(path.Join(run_path, "accuracy.val"))
if err != nil {
return
}
defer accuracy_file.Close()
accuracy_file_bytes, err := io.ReadAll(accuracy_file)
if err != nil {
return
}
fmt.Println(string(accuracy_file_bytes))
accuracy, err = strconv.ParseFloat(string(accuracy_file_bytes), 64)
if err != nil {
return
}
os.RemoveAll(run_path)
return
}
func trainModel(handle *Handle, model *BaseModel) {
definitionsRows, err := handle.Db.Query("select id from model_definition where status=$1 and model_id=$2", MODEL_DEFINITION_STATUS_INIT)
if err != nil {
fmt.Printf("Failed to trainModel!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
definitionsRows, err := handle.Db.Query("select id, target_accuracy from model_definition where status=$1 and model_id=$2", MODEL_DEFINITION_STATUS_INIT, model.Id)
if err != nil {
fmt.Printf("Failed to trainModel!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
defer definitionsRows.Close()
type row struct {
id string
target_accuracy int
}
definitions := []row{}
for definitionsRows.Next() {
var rowv row
if err = definitionsRows.Scan(&rowv.id, &rowv.target_accuracy); err != nil {
fmt.Printf("Failed to trainModel!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
definitions = append(definitions, rowv)
}
if len(definitions) == 0 {
fmt.Printf("Failed to trainModel!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
for _, def := range definitions {
accuracy, err := trainDefinition(handle, model.Id, def.id)
if err != nil {
fmt.Printf("Failed to train definition!Err:\n")
fmt.Println(err)
ModelDefinitionUpdateStatus(handle, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
continue
}
int_accuracy := int(accuracy * 100)
if int_accuracy < def.target_accuracy {
fmt.Printf("Failed to train definition! Accuracy less %d < %d\n", int_accuracy, def.target_accuracy)
ModelDefinitionUpdateStatus(handle, def.id, MODEL_DEFINITION_STATUS_FAILED_TRAINING)
continue
}
_, err = handle.Db.Exec("update model_definition set accuracy=$1, status=$2 where id=$3", int_accuracy, MODEL_DEFINITION_STATUS_TRANIED, def.id)
if err != nil {
fmt.Printf("Failed to train definition!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
}
rows, err := handle.Db.Query("select id from model_definition where model_id=$1 and status=$2 order by accuracy desc limit 1;", model.Id, MODEL_DEFINITION_STATUS_TRANIED)
if err != nil {
fmt.Printf("Db err select!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
defer rows.Close()
if !rows.Next() {
// TODO improve message
fmt.Printf("All definitions failed to train!")
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
defer definitionsRows.Close()
definitions := []string{}
var id string
if err = rows.Scan(&id); err != nil {
fmt.Printf("Db err!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
for definitionsRows.Next() {
if _, err = handle.Db.Exec("update model_definition set status=$1 where id=$2;", MODEL_DEFINITION_STATUS_READY, id); err != nil {
fmt.Printf("Db err!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
to_delete, err := handle.Db.Query("select id from model_definition where status != $1 and model_id=$2", MODEL_DEFINITION_STATUS_READY, model.Id)
if err != nil {
fmt.Printf("Db err!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
defer to_delete.Close()
for to_delete.Next() {
var id string
if err = definitionsRows.Scan(&id); err != nil {
fmt.Printf("Failed to trainModel!Err:\n")
if to_delete.Scan(&id);err != nil {
fmt.Printf("Db err!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
definitions = append(definitions, id)
os.RemoveAll(path.Join("savedData", model.Id, "defs", id))
}
if len(definitions) == 0 {
fmt.Printf("Failed to trainModel!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
if _, err = handle.Db.Exec("delete from model_definition where status!=$1 and model_id=$2;", MODEL_DEFINITION_STATUS_READY, model.Id); err != nil {
fmt.Printf("Db err!Err:\n")
fmt.Println(err)
ModelUpdateStatus(handle, model.Id, FAILED_TRAINING)
return
}
for _, def_id := range definitions {
_ = def_id
}
ModelUpdateStatus(handle, model.Id, READY)
}
func handleTrain(handle *Handle) {
@ -120,6 +312,24 @@ func handleTrain(handle *Handle) {
// Its not used rn
_ = model_type
// TODO check if the model has data
/*rows, err := handle.Db.Query("select mc.name, mdp.file_path from model_classes as mc join model_data_point as mdp on mdp.class_id = mc.id where mdp.model_mode = 1 and mc.model_id = $1 limit 1;", id)
if err != nil {
return Error500(err)
}
defer rows.Close()
if !rows.Next() {
return Error500(err)
}
var name string
var file_path string
err = rows.Scan(&name, &file_path)
if err != nil {
return Error500(err)
}*/
model, err := GetBaseModel(handle.Db, id)
if err == ModelNotFoundError {
return ErrorCode(nil, http.StatusNotFound, c.AddMap(AnyMap{
@ -136,61 +346,66 @@ func handleTrain(handle *Handle) {
return ErrorCode(nil, 400, c.AddMap(nil))
}
cls, err := model_classes.ListClasses(handle.Db, model.Id)
if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response
return Error500(err)
}
cls, err := model_classes.ListClasses(handle.Db, model.Id)
if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response
return Error500(err)
}
var fid string
var fid string
for i := 0; i < number_of_models; i++ {
def_id, err := MakeDefenition(handle.Db, model.Id, accuracy)
def_id, err := MakeDefenition(handle.Db, model.Id, accuracy)
if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response
return Error500(err)
}
if fid == "" {
fid = def_id
}
if fid == "" {
fid = def_id
}
// TODO change shape of it depends on the type of the image
err = MakeLayer(handle.Db, def_id, 1, 1, fmt.Sprintf("%d,%d,1", model.Width, model.Height))
if err != nil {
// TODO change shape of it depends on the type of the image
err = MakeLayer(handle.Db, def_id, 1, LAYER_INPUT, fmt.Sprintf("%d,%d,1", model.Width, model.Height))
if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response
return Error500(err)
}
err = MakeLayer(handle.Db, def_id, 4, 3, fmt.Sprintf("%d,1", len(cls)))
if err != nil {
}
err = MakeLayer(handle.Db, def_id, 4, LAYER_FLATTEN, fmt.Sprintf("%d,1", len(cls)))
if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response
return Error500(err)
}
err = MakeLayer(handle.Db, def_id, 5, 2, fmt.Sprintf("%d,1", len(cls)))
if err != nil {
}
err = MakeLayer(handle.Db, def_id, 5, LAYER_DENSE, fmt.Sprintf("%d,1", len(cls) * 3))
if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response
return Error500(err)
}
}
err = MakeLayer(handle.Db, def_id, 5, LAYER_DENSE, fmt.Sprintf("%d,1", len(cls)))
if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response
return Error500(err)
}
err = ModelDefinitionUpdateStatus(handle, def_id, MODEL_DEFINITION_STATUS_INIT)
if err != nil {
err = ModelDefinitionUpdateStatus(handle, def_id, MODEL_DEFINITION_STATUS_INIT)
if err != nil {
ModelUpdateStatus(handle, model.Id, FAILED_PREPARING_TRAINING)
// TODO improve this response
return Error500(err)
}
}
}
// TODO start training with id fid
// TODO start training with id fid
go trainModel(handle, model)
go trainModel(handle, model)
ModelUpdateStatus(handle, model.Id, TRAINING)
Redirect("/models/edit?id=" + model.Id, c.Mode, w, r)
ModelUpdateStatus(handle, model.Id, TRAINING)
Redirect("/models/edit?id="+model.Id, c.Mode, w, r)
return nil
})
}

View File

@ -24,6 +24,7 @@ const (
CONFIRM_PRE_TRAINING = 2
PREPARING_ZIP_FILE = 3
TRAINING = 4
READY = 5
)
var ModelNotFoundError = errors.New("Model not found error")

View File

@ -468,7 +468,7 @@ func (x Handle) ReadFiles(pathTest string, baseFilePath string, fileType string,
http.HandleFunc(pathTest, func(w http.ResponseWriter, r *http.Request) {
user_path := r.URL.Path[len(pathTest):]
fmt.Printf("Requested path: %s\n", user_path)
// fmt.Printf("Requested path: %s\n", user_path)
if !strings.HasSuffix(user_path, fileType) {
w.WriteHeader(http.StatusNotFound)

View File

@ -288,6 +288,30 @@
</form>
{{ end }}
{{ define "run-model-card" }}
<form hx-headers='{"REQUEST-TYPE": "html"}' enctype="multipart/form-data" hx-post="/models/run">
<input type="hidden" name="id" value={{.Model.Id}} />
<fieldset class="file-upload" >
<label for="file">Image</label>
<div class="form-msg">
Run image through them model and get the result
</div>
<div class="icon-holder">
<button class="icon">
<img replace="icon" src="/imgs/upload-icon.png" />
<span replace="File Selected">
Image File
</span>
</button>
<input id="file" name="file" type="file" required accept="application/zip" />
</div>
</fieldset>
<button>
Run
</button>
</form>
{{ end }}
{{ define "mainbody" }}
<main>
{{ if (eq .Model.Status 1) }}
@ -345,7 +369,7 @@
Processing zip file...
</div>
{{/* FAILED TO Prepare for training */}}
{{ else if (eq .Model.Status -3)}}
{{ else if or (eq .Model.Status -3) (eq .Model.Status -4)}}
{{ template "base-model-card" . }}
<form hx-delete="/models/train/reset" hx-headers='{"REQUEST-TYPE": "html"}' hx-swap="outerHTML">
Failed Prepare for training.<br/>
@ -364,9 +388,11 @@
{{/* TODO Add progress status on definitions */}}
{{/* TODO Add aility to stop training */}}
</div>
<button hx-post="/models/train/test?id={{ .Model.Id }}" hx-headers='{"REQUEST-TYPE": "html"}'>
Test
</button>
{{/* Model Ready */}}
{{ else if (eq .Model.Status 5)}}
{{ template "base-model-card" . }}
{{ template "run-model-card" . }}
{{ template "delete-model-card" . }}
{{ else }}
<h1>
Unknown Status of the model.

View File

@ -46,7 +46,7 @@ model.compile(
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
his = model.fit(dataset, validation_data= dataset_validation, epochs=50)
his = model.fit(dataset, validation_data= dataset_validation, epochs=70)
acc = his.history["accuracy"]
@ -54,4 +54,6 @@ f = open("accuracy.val", "w")
f.write(str(acc[-1]))
f.close()
model.save("model.keras")
tf.saved_model.save(model, "model")
# model.save("model.keras", save_format="tf")