fyp/logic/models/train/torch/nn/varstore.go

1360 lines
38 KiB
Go
Raw Normal View History

2024-04-22 00:09:07 +01:00
package my_nn
import (
"fmt"
"reflect"
"sort"
"strings"
"sync"
"github.com/charmbracelet/log"
"git.andr3h3nriqu3s.com/andr3/gotch"
"git.andr3h3nriqu3s.com/andr3/gotch/nn"
"git.andr3h3nriqu3s.com/andr3/gotch/ts"
)
// SEP is a separator to separate path elements in the tensor names.
const SEP = "."
type Var struct {
Tensor *ts.Tensor
Group uint // optimizer parameter group
Type string // can be "parameter" or "buffer"
Trainable bool // marked this variable is either trainable or not.For "buffer" type, it's always `false`
Persitent bool // only applied to "buffer" type. All parameters are persistent (when do VarStore.Save()).
}
// VarStore is used to store variables used by one or multiple layers.
// It specifies a SINGLE device where all variables are stored.
type VarStore struct {
sync.Mutex
device gotch.Device
vars map[string]Var
}
// Path is variable store with an associated path for variables naming.
type Path struct {
path []string
varstore *VarStore
group uint // optimizer parameter group
}
// Entry holds an entry corresponding to a given name in Path.
type Entry struct {
name string
path *Path
}
// NewVarStore creates a new variable store located on the specified device
func NewVarStore(device gotch.Device) *VarStore {
return &VarStore{
device: device,
vars: make(map[string]Var, 0),
}
}
// NOTE:
// To get (initiate) a path, call vs.Root()
// VarStore methods:
// =================
// Device returns device for this VarStore.
func (vs *VarStore) Device() gotch.Device {
return vs.device
}
// Len returns the number of tensors currently kept in this VarStore.
func (vs *VarStore) Len() int {
vs.Lock()
defer vs.Unlock()
return len(vs.vars)
}
// IsEmpty returns true if no tensors currently kept in this VarStore.
func (vs *VarStore) IsEmpty() bool {
vs.Lock()
defer vs.Unlock()
return (len(vs.vars) == 0)
}
// TrainableVariabless returns reference to all trainable variables kept in VarStore.
func (vs *VarStore) TrainableVariables() []*ts.Tensor {
vs.Lock()
defer vs.Unlock()
var trainables []*ts.Tensor
for _, v := range vs.vars {
x := v.Tensor
if x.MustRequiresGrad() {
trainables = append(trainables, x)
}
}
return trainables
}
func (vs *VarStore) GetVarOfName(name string) Var {
return vs.vars[name]
}
func (vs *VarStore) GetTensorOfVar(name string) *ts.Tensor {
return vs.vars[name].Tensor
}
func (vs *VarStore) UpdateVarTensor(name string, tensor *ts.Tensor, del bool) {
if (del) {
or_panic(vs.vars[name].Tensor.Drop())
}
v := vs.vars[name]
v.Tensor = tensor
vs.vars[name] = v
}
// Variables returns reference of all variables and their names in a map[variable_name]Tensor
//
// NOTE. returned map includes all variables of "parameter" and "buffer" type.
func (vs *VarStore) Variables() map[string]ts.Tensor {
vs.Lock()
defer vs.Unlock()
namedTensors := make(map[string]ts.Tensor, 0)
for k, v := range vs.vars {
namedTensors[k] = *v.Tensor
}
return namedTensors
}
// Root gets the root path for this VarStore.
//
// NOTE: Variables are named and organized using paths. This function returns
// the top level path for the var store and can be combined with '/'
// to create sub-paths.
func (vs *VarStore) Root() *Path {
return &Path{
path: []string{},
varstore: vs,
group: 0,
}
}
// Save saves the VarStore variable values to a file.
//
// NOTE: Weight values for all the tensors currently stored in the
// var-store gets saved in the given file.
func (vs *VarStore) Save(filepath string) error {
vs.Lock()
defer vs.Unlock()
var namedTensors []ts.NamedTensor
for k, v := range vs.vars {
if v.Type == "parameter" || (v.Type == "buffer" && v.Persitent) {
namedTensors = append(namedTensors, ts.NamedTensor{
Name: k,
Tensor: v.Tensor,
})
}
}
// return ts.SaveMulti(namedTensors, filepath)
return ts.SaveMultiNew(namedTensors, filepath)
}
// Load loads VarStore variable values from a file.
//
// NOTE: Weight values for all the tensors currently stored in the
// VarStore gets loaded from the given file. Note that the set of
// variables stored in the VarStore is not changed, only the values
// for these tensors are modified.
// It will throw error if name of the loaded tensors can not find
// in the current VarStore named tensors set.
func (vs *VarStore) Load(filepath string) error {
namedTensors, err := ts.LoadMultiWithDevice(filepath, vs.device)
if err != nil {
return err
}
var namedTensorsMap map[string]*ts.Tensor = make(map[string]*ts.Tensor, 0)
for _, namedTensor := range namedTensors {
namedTensorsMap[namedTensor.Name] = namedTensor.Tensor
}
// Match and in-place copy value (update) from newly loaded tensors
// to existing named tensors if name is matched. Throw error otherwise.
vs.Lock()
defer vs.Unlock()
for name, v := range vs.vars {
// missing variable
currTs, ok := namedTensorsMap[name]
if !ok {
err = fmt.Errorf("VarStore.Load() failed: there's a tensor with name %q in VarStore, but not found in the loaded weights.\n", name)
return err
}
// mismatched shape
sourceShape := currTs.MustSize()
destShape := v.Tensor.MustSize()
if !reflect.DeepEqual(destShape, sourceShape) {
err = fmt.Errorf("Mismatched shape error for variable name: %v - At store: %v - At source %v\n", name, destShape, sourceShape)
return err
}
ts.NoGrad(func() {
v.Tensor.Copy_(currTs)
})
}
for _, x := range namedTensors {
x.Tensor.MustDrop()
}
ts.CleanUp()
return nil
}
// LoadWeights loads pretrained weights to VarStore.
func (vs *VarStore) LoadWeights(namedTensors []ts.NamedTensor) error {
var namedTensorsMap map[string]*ts.Tensor = make(map[string]*ts.Tensor, 0)
for _, namedTensor := range namedTensors {
namedTensorsMap[namedTensor.Name] = namedTensor.Tensor
}
// Match and in-place copy value (update) from newly loaded tensors
// to existing named tensors if name is matched. Throw error otherwise.
vs.Lock()
defer vs.Unlock()
for name, v := range vs.vars {
// missing variable
currTs, ok := namedTensorsMap[name]
if !ok {
err := fmt.Errorf("VarStore.LoadWeights() failed: there's a tensor with name %q in VarStore, but not found in the loaded weights.\n", name)
return err
}
// mismatched shape
sourceShape := currTs.MustSize()
destShape := v.Tensor.MustSize()
if !reflect.DeepEqual(destShape, sourceShape) {
err := fmt.Errorf("VarStore.LoadWeights() failed. Mismatched shape error for variable name: %v - At store: %v - At source %v\n", name, destShape, sourceShape)
return err
}
ts.NoGrad(func() {
v.Tensor.Copy_(currTs)
})
}
ts.CleanUp()
return nil
}
// LoadPartial loads the VarStore variable values from a file if it exists.
//
// Weight values for the tensors currently stored in the var-store and the given file get
// loaded from the given file. If a variable in the var store is not present in the given file,
// it is skipped and its values are not updated. This method should be used if pre-trained
// weight for only parts of the model are available.
// Note that the set of variables stored in the var-store is not changed, only the values
// for these tensors are modified.
//
// Returns a String Vector containing the names of missing variables.
func (vs *VarStore) LoadPartial(filepath string) ([]string, error) {
namedTensors, err := ts.LoadMultiWithDevice(filepath, vs.device)
if err != nil {
return nil, err
}
var namedTensorsMap map[string]*ts.Tensor = make(map[string]*ts.Tensor, 0)
for _, namedTensor := range namedTensors {
namedTensorsMap[namedTensor.Name] = namedTensor.Tensor
}
var missingVariables []string
// Match and in-place copy value (update) from newly loaded tensors
// to existing named tensors if name is matched. Throw error otherwise.
vs.Lock()
defer vs.Unlock()
for name, v := range vs.vars {
var currTs *ts.Tensor
var ok bool
// missing variable
if currTs, ok = namedTensorsMap[name]; !ok {
missingVariables = append(missingVariables, name)
continue
}
// mismatched shape
destShape := currTs.MustSize()
sourceShape := v.Tensor.MustSize()
if !reflect.DeepEqual(destShape, sourceShape) {
fmt.Printf("WARNING: Mismatched shape error for variable name: %v - At store: %v - At source %v. Skip loading this weight...\n", name, destShape, sourceShape)
missingVariables = append(missingVariables, name)
continue
}
ts.NoGrad(func() {
v.Tensor.Copy_(currTs)
})
}
for _, x := range namedTensors {
x.Tensor.MustDrop()
}
ts.CleanUp()
return missingVariables, nil
}
// LoadWeightsPartial loads the VarStore variable values from a file if it exists.
//
// Weight values for the tensors currently stored in the var-store and the given file get
// loaded from the given file. If a variable in the var store is not present in the given file,
// it is skipped and its values are not updated. This method should be used if pre-trained
// weight for only parts of the model are available.
// Note that the set of variables stored in the var-store is not changed, only the values
// for these tensors are modified.
//
// Returns a String Vector containing the names of missing variables.
func (vs *VarStore) LoadWeightsPartial(namedTensors []ts.NamedTensor) ([]string, error) {
var namedTensorsMap map[string]*ts.Tensor = make(map[string]*ts.Tensor, 0)
for _, namedTensor := range namedTensors {
namedTensorsMap[namedTensor.Name] = namedTensor.Tensor
}
var missingVariables []string
// Match and in-place copy value (update) from newly loaded tensors
// to existing named tensors if name is matched. Throw error otherwise.
vs.Lock()
defer vs.Unlock()
for name, v := range vs.vars {
var currTs *ts.Tensor
var ok bool
// missing variable
if currTs, ok = namedTensorsMap[name]; !ok {
missingVariables = append(missingVariables, name)
continue
}
// mismatched shape
destShape := currTs.MustSize()
sourceShape := v.Tensor.MustSize()
if !reflect.DeepEqual(destShape, sourceShape) {
fmt.Printf("WARNING: Mismatched shape error for variable name: %v - At store: %v - At source %v. Skip loading this weight...\n", name, destShape, sourceShape)
missingVariables = append(missingVariables, name)
continue
}
ts.NoGrad(func() {
v.Tensor.Copy_(currTs)
})
}
ts.CleanUp()
return missingVariables, nil
}
// Freeze freezes this VarStore.
//
// Gradients for the variables in this store are not tracked anymore.
func (vs *VarStore) Freeze() error {
vs.Lock()
defer vs.Unlock()
for name, v := range vs.vars {
err := v.Tensor.RequiresGrad_(false)
if err != nil {
err = fmt.Errorf("VarStore.Freeze() set 'requiresGrad' for tensor %q failed.", name)
return err
}
}
return nil
}
// Unfreeze unfreezes a VarStore.
//
// Gradients for the variables in this store are tracked again.
func (vs *VarStore) Unfreeze() error {
vs.Lock()
defer vs.Unlock()
for name, v := range vs.vars {
if v.Type == "parameter" && v.Trainable {
err := v.Tensor.RequiresGrad_(true)
err = fmt.Errorf("VarStore.Freeze() set 'requiresGrad' for tensor %q failed.", name)
return err
}
}
return nil
}
// Copy copies variable values from a source VarStore to this VarStore.
//
// All the variables in this var store have to exist with the same
// name in the source var store, otherwise an error is returned.
func (vs *VarStore) Copy(src *VarStore) error {
vs.Lock()
defer vs.Unlock()
src.Lock()
defer src.Unlock()
srcVars := src.vars
device := vs.device
for k := range vs.vars {
if _, ok := srcVars[k]; !ok {
err := fmt.Errorf("VarStore.Copy() failed: cannot find %q in the source VarStore.\n", k)
return err
}
}
for k, v := range vs.vars {
srcV := srcVars[k]
srcDevTs, err := srcV.Tensor.To(device, false)
if err != nil {
return err
}
ts.NoGrad(func() {
v.Tensor.Copy_(srcDevTs)
})
srcDevTs.MustDrop()
}
ts.CleanUp()
return nil
}
// Summary prints a simple list of all named variables with their shapes.
func (vs *VarStore) Summary() {
vars := vs.vars
layers := make([]string, 0, len(vars))
for name := range vars {
layers = append(layers, name)
}
sort.Strings(layers)
var dtype gotch.DType
isFirst := true
for _, l := range layers {
var x *ts.Tensor
var isBuffer bool
for name, v := range vars {
if name == l {
x = v.Tensor
// Get DType of first tensor for representation only
if isFirst {
dtype = x.DType()
}
isFirst = false
isBuffer = v.Type == "buffer"
break
}
}
if isBuffer {
fmt.Printf("%s - [buffer] - %+v\n", l, x.MustSize())
} else {
fmt.Printf("%s - %+v\n", l, x.MustSize())
}
}
fmt.Printf("Num of layers: %v\n", len(vars))
fmt.Printf("DType: %v\n", dtype)
}
// Destroy deletes all tensors in varstore and set it to nil.
func (vs *VarStore) Destroy() {
vs.Lock()
for n, v := range vs.vars {
v.Tensor.MustDrop()
delete(vs.vars, n)
}
vs.Unlock()
vs = nil
}
// ToDType casts all variables in VarStore to specified DType.
//
// NOTE. only float-like types (Half, BFloat16, Float, Double) can ensure convertible.
func (vs *VarStore) ToDType(dtype gotch.DType) {
vs.Root().ToDType(dtype)
}
// ToFloat casts all float-like variables in VarStore to `Float` dtype.
//
// NOTE. float-like includes `Half`,`BFloat16`, `Float` and `Double` dtype.
func (vs *VarStore) ToFloat() {
vs.Root().ToFloat()
}
// ToDouble casts all float-like variables in VarStore to `Double` dtype.
//
// NOTE. float-like includes `Half`, `Float` and `Double` dtype.
func (vs *VarStore) ToDouble() {
vs.Root().ToDouble()
}
// ToHalf casts all float-like variables in VarStore to `Half` dtype.
//
// NOTE. float-like includes `Half`, `Float` and `Double` dtype.
func (vs *VarStore) ToHalf() {
vs.Root().ToHalf()
}
// ToBFloat16 casts all float-like variables in VarStore to `BFloat16` dtype.
//
// NOTE. float-like includes `Half`, `Float` and `Double` dtype.
func (vs *VarStore) ToBFloat16() {
vs.Root().ToBFloat16()
}
func (vs *VarStore) ToDevice(device gotch.Device) {
p := vs.Root()
p.ToDevice(device)
}
// Path methods:
// =============
// Sub gets a sub-path of the given path.
func (p *Path) Sub(str string) *Path {
if strings.Contains(str, SEP) {
log.Fatalf("Path.Sub() failed: name cannot contain %v (%v)\n", SEP, str)
}
path := p.path
path = append(path, str)
return &Path{
path: path,
varstore: p.varstore,
group: p.group,
}
}
// Paths returns all sub paths from current path.
func (p *Path) Paths() []string {
return p.path
}
// Device gets the device where the VarStore variables are stored.
func (p *Path) Device() gotch.Device {
return p.varstore.device
}
// NOTE: Cannot name as `path` as having a field name `path`
func (p *Path) getpath(name string) string {
if strings.Contains(name, SEP) {
log.Fatalf("Sub name cannot contain %v (%v)\n", SEP, name)
}
if len(p.path) == 0 {
return name
} else {
return fmt.Sprintf("%v%v%v", strings.Join(p.path, SEP), SEP, name)
}
}
func (p *Path) addNamed(name string, newTs *ts.Tensor, trainable bool, varType string, persistent bool) (*ts.Tensor, string, error) {
path := p.getpath(name)
p.varstore.Lock()
defer p.varstore.Unlock()
if _, ok := p.varstore.vars[path]; ok {
path = fmt.Sprintf("%v__%v", path, len(p.varstore.vars))
}
var (
tensor *ts.Tensor
err error
)
if trainable {
tensor, err = newTs.SetRequiresGrad(true, false)
if err != nil {
return nil, path, err
}
} else {
tensor, err = newTs.ShallowClone()
if err != nil {
return nil, path, err
}
}
v := Var{
Tensor: tensor,
Group: p.group,
Trainable: trainable,
Type: varType,
Persitent: persistent,
}
p.varstore.vars[path] = v
return tensor, path, nil
}
func (p *Path) add(name string, newTs *ts.Tensor, trainable bool, varType string, persistent bool) (*ts.Tensor, error) {
ts, _, err := p.addNamed(name, newTs, trainable, varType, persistent)
return ts, err
}
type AddOpts struct {
VarType string
Persistent bool
}
type AddOpt func(*AddOpts)
func defaultAddOpts() *AddOpts {
return &AddOpts{
VarType: "parameter",
Persistent: true,
}
}
func WithVarType(v string) AddOpt {
if v != "parameter" && v != "buffer" {
log.Fatalf("WithVarType() failed(): invalid option variable type. Input must be either 'parameter' or 'buffer'.")
}
return func(o *AddOpts) {
o.VarType = v
}
}
func WithPersistent(v bool) AddOpt {
return func(o *AddOpts) {
o.Persistent = v
}
}
// Add adds a tensor to a given path.
//
// Args
// - name: intention name of variable in VarStore (if duplicated, it will be added a suffix number)
// - x: tensor holding values to keep in VarStore
// - trainable: marked whether tensor is trainable.
// - o.VarType: variable type, i.e., either "parameter" or "buffer"
// - o.Persistent: whether to save this variables when `VarStore.Save()` is called. Only applied to `buffer` type.
// Returns a reference to a tensor stored in VarStore and error if occurred.
func (p *Path) Add(name string, x *ts.Tensor, trainable bool, opts ...AddOpt) (*ts.Tensor, error) {
o := defaultAddOpts()
for _, opt := range opts {
opt(o)
}
return p.add(name, x, trainable, o.VarType, o.Persistent)
}
func (p *Path) AddNamed(name string, x *ts.Tensor, trainable bool, opts ...AddOpt) (*ts.Tensor, string, error) {
o := defaultAddOpts()
for _, opt := range opts {
opt(o)
}
return p.addNamed(name, x, trainable, o.VarType, o.Persistent)
}
// MustAdd adds a tensor to a given path.
//
// Args
// - name: intention name of variable in VarStore (if duplicated, it will be added a suffix number)
// - x: tensor holding values to keep in VarStore
// - trainable: marked whether tensor is trainable.
// - o.VarType: variable type, i.e., either "parameter" or "buffer"
// - o.Persistent: whether to save this variables when `VarStore.Save()` is called. Only applied to `buffer` type.
// Returns a reference to a tensor stored in VarStore.
func (p *Path) MustAdd(name string, x *ts.Tensor, trainable bool, opts ...AddOpt) *ts.Tensor {
x, err := p.Add(name, x, trainable, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// Remove removes a variable from `VarStore`
func (p *Path) Remove(name string) error {
p.varstore.Lock()
defer p.varstore.Unlock()
_, ok := p.varstore.vars[name]
if !ok {
err := fmt.Errorf("Path.Remove() failed: cannot find a variable with name %q in VarStore.", name)
return err
}
delete(p.varstore.vars, name)
return nil
}
// MustRemove removes a variable from `VarStore`
func (p *Path) MustRemove(name string) {
err := p.Remove(name)
if err != nil {
err = fmt.Errorf("Path.MustRemove() failed: %w", err)
log.Fatal(err)
}
}
func (p *Path) getOrAddWithLock(name string, tensor *ts.Tensor, trainable bool, opts ...AddOpt) (*ts.Tensor, error) {
path := p.getpath(name)
// if found, return it
if v, ok := p.varstore.vars[path]; ok {
return v.Tensor, nil
}
// not found, add it
return p.Add(name, tensor, trainable, opts...)
}
func (p *Path) SetGroup(g uint) {
p.varstore.Lock()
defer p.varstore.Unlock()
// TODO. set group for individual variables.
// TBD. variables of current path only or all sub paths as well?
// For now, just set group for all variable at the path
path := strings.Join(p.path, SEP)
for name, v := range p.varstore.vars {
vpaths := strings.Split(name, SEP)
vpath := strings.Join(vpaths[:len(vpaths)-1], SEP)
if vpath == path {
v.Group = g
p.varstore.vars[name] = v
}
}
p.group = g
}
// ToDType casts all variables in this path and its sub-paths to the specified dtype.
//
// NOTE. this method should be used for floating-point conversion, i.e.,
// "gotch.Float", "gotch.Half", "gotch.BFloat16", "gotch.Double".
func (p *Path) ToDType(dtype gotch.DType) {
p.varstore.Lock()
defer p.varstore.Unlock()
path := strings.Join(p.path, SEP)
for name, v := range p.varstore.vars {
if strings.Contains(name, path) {
newVar := v
newVar.Tensor = v.Tensor.MustTotype(dtype, true)
p.varstore.vars[name] = newVar
}
}
}
// toFloat casts all float-like variables in this current path and sub-paths to specified dtype.
func (p *Path) toFloat(dtype gotch.DType) {
p.varstore.Lock()
defer p.varstore.Unlock()
path := strings.Join(p.path, SEP)
for name, v := range p.varstore.vars {
if strings.Contains(name, path) {
dtype := v.Tensor.DType()
if gotch.IsFloatDType(dtype) {
newVar := v
newVar.Tensor = v.Tensor.MustTotype(dtype, true)
p.varstore.vars[name] = newVar
}
}
}
ts.CleanUp()
}
// ToFloat casts all variables in current path and subpaths to `Float` precision.
func (p *Path) ToFloat(floatDTypeOpt ...gotch.DType) {
dtype := gotch.Float
if len(floatDTypeOpt) > 0 {
dt := floatDTypeOpt[0]
if !gotch.IsFloatDType(dt) {
// Ingore the option
if gotch.Debug {
log.Printf("WARNING: nn.Path.ToFloat() input dtype is invalid float DType %v. Just ignoring...\n", dt)
}
} else {
dtype = dt
}
}
p.toFloat(dtype)
}
// ToDouble casts all variables in current path and subpaths to `Double` precision dtype.
func (p *Path) ToDouble() {
p.toFloat(gotch.Double)
}
// ToHalf casts all variables in current path and subpaths to `Half` precision dtype.
func (p *Path) ToHalf() {
p.toFloat(gotch.Half)
}
// ToBFloat16() converts all variables in current path and subpaths to `BFloat16` dtype.
func (p *Path) ToBFloat16() {
p.toFloat(gotch.BFloat16)
}
func (p *Path) ToDevice(device gotch.Device) {
var err error
p.varstore.Lock()
defer p.varstore.Unlock()
path := strings.Join(p.path, SEP)
for name, v := range p.varstore.vars {
if strings.Contains(name, path) {
newVar := v
var requires bool
requires, err = v.Tensor.RequiresGrad()
or_panic(err)
var retain bool
retain, err = v.Tensor.RetainsGrad(false)
or_panic(err)
newVar.Tensor, err = v.Tensor.To(device, true)
or_panic(err)
newVar.Tensor, err = newVar.Tensor.SetRequiresGrad(requires, true)
or_panic(err)
if retain {
err = newVar.Tensor.RetainGrad(false)
or_panic(err)
}
p.varstore.vars[name] = newVar
}
}
ts.CleanUp()
}
// ZerosNoTrain creates a new variable initialized with zeros.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable will not be trainable so
// gradients will not be tracked.
// The variable uses a float tensor initialized with zeros.
func (p *Path) ZerosNoTrain(name string, dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
device := p.Device()
dtype := gotch.DefaultDType
z, err := ts.Zeros(dims, dtype, device)
if err != nil {
err = fmt.Errorf("Path.ZerosNoTrain() failed: %w", err)
return nil, err
}
out, err := p.Add(name, z, false, opts...)
if err != nil {
return nil, err
}
z.MustDrop()
return out, nil
}
// MustZerosNoTrain creates a new variable initialized with zeros.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable will not be trainable so
// gradients will not be tracked.
// The variable uses a float tensor initialized with zeros.
func (p *Path) MustZerosNoTrain(name string, dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := p.ZerosNoTrain(name, dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OnesNoTrain creates a new variable initialized with ones.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable will not be trainable so
// gradients will not be tracked.
// The variable uses a float tensor initialized with ones.
func (p *Path) OnesNoTrain(name string, dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
device := p.Device()
dtype := gotch.DefaultDType
z, err := ts.Ones(dims, dtype, device)
if err != nil {
err = fmt.Errorf("Path.OneNoTrain() failed: %w", err)
return nil, err
}
out, err := p.Add(name, z, false, opts...)
if err != nil {
return nil, err
}
z.MustDrop()
return out, nil
}
// MustOnesNoTrain creates a new variable initialized with ones.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable will not be trainable so
// gradients will not be tracked.
// The variable uses a float tensor initialized with ones.
func (p *Path) MustOnesNoTrain(name string, dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := p.OnesNoTrain(name, dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// NewVar creates a new variable.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized as per the
// related argument.
func (p *Path) NewVarNamed(name string, dims []int64, ini nn.Init, opts ...AddOpt) (*ts.Tensor, string, error) {
dtype := gotch.DefaultDType
// v := ini.InitTensor(dims, p.varstore.device, dtype)
var v *ts.Tensor
v = ini.InitTensor(dims, p.varstore.device, dtype)
out, path, err := p.AddNamed(name, v, true, opts...)
if err != nil {
return nil, "", err
}
err = v.Drop()
or_panic(err)
return out,path, err
}
// NewVar creates a new variable.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized as per the
// related argument.
func (p *Path) NewVar(name string, dims []int64, ini nn.Init, opts ...AddOpt) (*ts.Tensor, error) {
dtype := gotch.DefaultDType
// v := ini.InitTensor(dims, p.varstore.device, dtype)
var v *ts.Tensor
v = ini.InitTensor(dims, p.varstore.device, dtype)
out, err := p.Add(name, v, true, opts...)
if err != nil {
return nil, err
}
err = v.Drop()
or_panic(err)
return out, err
}
// MustNewVar create a new variable. It panics if error.
func (p *Path) MustNewVar(name string, dims []int64, ini nn.Init, opts ...AddOpt) *ts.Tensor {
x, err := p.NewVar(name, dims, ini, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// Zeros creates a new variable initialized with zeros.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized with zeros.
func (p *Path) Zeros(name string, dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
return p.NewVar(name, dims, nn.NewConstInit(0.0), opts...)
}
// MustZeros create a new variables with zero values. It panics if error.
func (p *Path) MustZeros(name string, dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := p.Zeros(name, dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// Ones creates a new variable initialized with ones.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized with ones.
func (p *Path) Ones(name string, dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
return p.NewVar(name, dims, nn.NewConstInit(1.0), opts...)
}
// MustOnes creates a new variable initialized with ones. It panics if error occurred.
func (p *Path) MustOnes(name string, dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := p.Ones(name, dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// RandnStandard creates a new variable initialized randomly with normal distribution.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized randomly using a
// standard normal distribution.
func (p *Path) RandnStandard(name string, dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
return p.NewVar(name, dims, nn.NewRandnInit(0.0, 1.0), opts...)
}
// MustRandnStandard creates a new variable initialized randomly with normal distribution. It panics if error occurred.
func (p *Path) MustRandnStandard(name string, dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := p.RandnStandard(name, dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// Randn creates a new variable initialized randomly with normal distribution.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized randomly using a
// normal distribution with the specified mean and standard deviation.
func (p *Path) Randn(name string, dims []int64, mean float64, stdev float64, opts ...AddOpt) (*ts.Tensor, error) {
return p.NewVar(name, dims, nn.NewRandnInit(mean, stdev), opts...)
}
// MustRandn creates a new variable initialized randomly with normal distribution. It panics if error occurred.
func (p *Path) MustRandn(name string, dims []int64, mean float64, stdev float64, opts ...AddOpt) *ts.Tensor {
x, err := p.Randn(name, dims, mean, stdev, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// Uniform creates a new variable initialized randomly with uniform distribution.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized randomly using a
// uniform distribution between the specified bounds.
func (p *Path) Uniform(name string, dims []int64, lo, up float64, opts ...AddOpt) (*ts.Tensor, error) {
return p.NewVar(name, dims, nn.NewUniformInit(lo, up), opts...)
}
// MustUniform creates a new variable initialized randomly with uniform distribution. It panics if error occurred.
func (p *Path) MustUniform(name string, dims []int64, lo, up float64, opts ...AddOpt) *ts.Tensor {
x, err := p.Uniform(name, dims, lo, up, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// KaimingUniform creates a new variable initialized randomly with kaiming uniform.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized randomly using a
// uniform distribution which bounds follow Kaiming initialization.
func (p *Path) KaimingUniform(name string, dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
return p.NewVar(name, dims, nn.NewKaimingUniformInit(), opts...)
}
// MustKaimingUniform creates a new variable initialized randomly with kaiming uniforms. It panics if error occurred.
func (p *Path) MustKaimingUniform(name string, dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := p.KaimingUniform(name, dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// VarCopy creates a new variable initialized by copying an existing tensor.
//
// The new variable is named according to the name parameter and
// has the specified shape. The variable is trainable, its gradient
// will be tracked.
// The variable uses a float tensor initialized by copying some
// given tensor.
func (p *Path) VarCopy(name string, t *ts.Tensor) (*ts.Tensor, error) {
size, err := t.Size()
if err != nil {
err = fmt.Errorf("Path.VarCopy() failed: %w\n", err)
return nil, err
}
v, err := p.Zeros(name, size)
if err != nil {
return nil, err
}
ts.NoGrad(func() {
ts.Copy_(v, t)
})
return v, nil
}
// VarCopy creates a new variable initialized by copying an existing tensor.
func (p *Path) MustVarCopy(name string, t *ts.Tensor) *ts.Tensor {
x, err := p.VarCopy(name, t)
if err != nil {
log.Fatal(err)
}
return x
}
// Get gets a reference to tensor corresponding to a given name if present.
func (p *Path) Get(name string) (*ts.Tensor, error) {
p.varstore.Lock()
defer p.varstore.Unlock()
v, ok := p.varstore.vars[name]
if !ok {
err := fmt.Errorf("Path.Get() failed: Cannot find variable for name: %v\n", name)
return nil, err
}
return v.Tensor, nil
}
// MustGet gets a reference to a tensor corresponding to a given name if present. It panics if error occurred.
func (p *Path) MustGet(name string) *ts.Tensor {
x, err := p.Get(name)
if err != nil {
log.Fatal(err)
}
return x
}
// Entry gets the entry corresponding to a given name for in-place manipulation.
func (p *Path) Entry(name string) *Entry {
p.varstore.Lock()
defer p.varstore.Unlock()
return &Entry{
name: name,
path: p,
}
}
// Entry methods:
// ==============
// OrVar returns the existing entry if found, otherwise create a new variable.
//
// If this entry name matches the name of a variables stored in the
// var store, the corresponding tensor is returned. Otherwise a new
// variable is added to the var-store with the entry name and is
// initialized according to the init parameter.
func (e *Entry) OrVar(dims []int64, init nn.Init, opts ...AddOpt) (*ts.Tensor, error) {
v := init.InitTensor(dims, e.path.varstore.device)
out, err := e.path.getOrAddWithLock(e.name, v, true, opts...)
if err != nil {
return nil, err
}
v.MustDrop()
return out, nil
}
// MustOrVar returns the existing entry if found, otherwise creates a new variable. It panics if error.
func (e *Entry) MustOrVar(dims []int64, init nn.Init, opts ...AddOpt) *ts.Tensor {
x, err := e.OrVar(dims, init, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OrZeros returns the existing entry if found, otherwise creates a new variable.
func (e *Entry) OrZeros(dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
return e.OrVar(dims, nn.NewConstInit(0.0))
}
// MustOrZeros returns the exising entry if found, otherwise creates a new variable.
func (e *Entry) MustOrZeros(dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := e.OrZeros(dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OrVarCopy returns the existing entry if found, otherwise create a new variable.
func (e *Entry) OrVarCopy(tensor *ts.Tensor) (*ts.Tensor, error) {
size, err := tensor.Size()
if err != nil {
return nil, err
}
v, err := e.OrZeros(size)
if err != nil {
return nil, err
}
ts.NoGrad(func() {
ts.Copy_(v, tensor)
})
return v, nil
}
// MustOrVarCopy returns the existing entry if found, otherwise create a new variable.
func (e *Entry) MustOrVarCopy(tensor *ts.Tensor) *ts.Tensor {
x, err := e.OrVarCopy(tensor)
if err != nil {
log.Fatal(err)
}
return x
}
// OrKaimingUniform returns the existing entry if, otherwise create a new variable.
func (e *Entry) OrKaimingUniform(dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
return e.OrVar(dims, nn.NewKaimingUniformInit(), opts...)
}
// MustOrKaimingUniform returns the existing entry if, otherwise create a new variable.
func (e *Entry) MustOrKaimingUniform(dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := e.OrKaimingUniform(dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OrOnes returns the existing entry if found, otherwise create a new variable.
func (e *Entry) OrOnes(dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
return e.OrVar(dims, nn.NewConstInit(1.0), opts...)
}
// MustOrOnes returns the existing entry if found, otherwise create a new variable.
func (e *Entry) MustOrOnes(dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := e.OrOnes(dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OrOnesNoTrain returns the existing entry if found, otherwise create a new variable.
func (e *Entry) OrOnesNoTrain(dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
dtype := gotch.DefaultDType
o := ts.MustOnes(dims, dtype, e.path.Device())
out, err := e.path.getOrAddWithLock(e.name, o, true, opts...)
if err != nil {
return nil, err
}
o.MustDrop()
return out, nil
}
// MustOrOnesNoTrain returns the existing entry if found, otherwise create a new variable.
func (e *Entry) MustOrOnesNoTrain(dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := e.OrOnesNoTrain(dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OrRandn returns the existing entry if found, otherwise create a new variable.
func (e *Entry) OrRandn(dims []int64, mean, stdev float64, opts ...AddOpt) (*ts.Tensor, error) {
return e.OrVar(dims, nn.NewRandnInit(mean, stdev), opts...)
}
// MustOrRandn returns the existing entry if, otherwise create a new variable.
func (e *Entry) MustOrRandn(dims []int64, mean, stdev float64, opts ...AddOpt) *ts.Tensor {
x, err := e.OrRandn(dims, mean, stdev, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OrRandnStandard returns the existing entry if found, otherwise create a new variable.
func (e *Entry) OrRandnStandard(dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
return e.OrVar(dims, nn.NewRandnInit(0.0, 1.0), opts...)
}
// MustOrRandnStandard returns the existing entry if, otherwise create a new variable.
func (e *Entry) MustOrRandnStandard(dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := e.OrRandnStandard(dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OrUniform returns the existing entry if found, otherwise create a new variable.
func (e *Entry) OrUniform(dims []int64, lo, up float64, opts ...AddOpt) (*ts.Tensor, error) {
return e.OrVar(dims, nn.NewUniformInit(lo, up), opts...)
}
// MustOrUniform returns the existing entry if found, otherwise create a new variable.
func (e *Entry) MustOrUniform(dims []int64, lo, up float64, opts ...AddOpt) *ts.Tensor {
x, err := e.OrUniform(dims, lo, up, opts...)
if err != nil {
log.Fatal(err)
}
return x
}
// OrZerosNoTrain returns the existing entry if found, otherwise create a new variable.
func (e *Entry) OrZerosNoTrain(dims []int64, opts ...AddOpt) (*ts.Tensor, error) {
dtype := gotch.DefaultDType
z := ts.MustZeros(dims, dtype, e.path.Device())
out, err := e.path.getOrAddWithLock(e.name, z, true, opts...)
if err != nil {
return nil, err
}
z.MustDrop()
return out, nil
}
// MustOrZerosNoTrain returns the existing entry if found, otherwise create a new variable.
func (e *Entry) MustOrZerosNoTrain(dims []int64, opts ...AddOpt) *ts.Tensor {
x, err := e.OrZerosNoTrain(dims, opts...)
if err != nil {
log.Fatal(err)
}
return x
}