604 lines
16 KiB
Go
604 lines
16 KiB
Go
|
package my_nn
|
||
|
|
||
|
// Optimizers to be used for gradient-descent based training.
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"math"
|
||
|
|
||
|
"github.com/charmbracelet/log"
|
||
|
"git.andr3h3nriqu3s.com/andr3/gotch/ts"
|
||
|
)
|
||
|
|
||
|
// Optimizer is a struct object to run gradient descent.
|
||
|
type Optimizer struct {
|
||
|
varstore *VarStore
|
||
|
opt *ts.COptimizer
|
||
|
// variablesInOptimizer uint8
|
||
|
variablesInOptimizer map[string]struct{}
|
||
|
config OptimizerConfig //interface{}
|
||
|
stepCount int
|
||
|
lr float64
|
||
|
}
|
||
|
|
||
|
func (o *Optimizer) Debug() {
|
||
|
for n, _ := range o.variablesInOptimizer {
|
||
|
v := o.varstore.GetVarOfName(n)
|
||
|
leaf, err := v.Tensor.IsLeaf(false)
|
||
|
or_panic(err)
|
||
|
|
||
|
retains, err := v.Tensor.RetainsGrad(false)
|
||
|
or_panic(err)
|
||
|
|
||
|
log.Info("[opt] var test", "n", n, "leaf", leaf, "retains", retains)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (o *Optimizer) RefreshValues() (err error) {
|
||
|
opt, err := o.config.buildCOpt(o.lr)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
for name := range o.variablesInOptimizer {
|
||
|
v := o.varstore.GetVarOfName(name)
|
||
|
if v.Trainable {
|
||
|
if err = opt.AddParameter(v.Tensor, v.Group); err != nil {
|
||
|
err = fmt.Errorf("Optimizer defaultBuild - AddParameter failed: %w\n", err)
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
o.opt = opt
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// OptimizerConfig defines Optimizer configurations. These configs can be used to build optimizer.
|
||
|
type OptimizerConfig interface {
|
||
|
buildCOpt(lr float64) (*ts.COptimizer, error)
|
||
|
|
||
|
// Build builds an optimizer with the specified learning rate handling variables stored in `vs`.
|
||
|
//
|
||
|
// NOTE: Build is a 'default' method. It can be called by wrapping
|
||
|
// 'DefaultBuild' function
|
||
|
// E.g. AdamOptimizerConfig struct have a method to fullfil `Build` method of
|
||
|
// OptimizerConfig by wrapping `DefaultBuild` like
|
||
|
// (config AdamOptimizerConfig) Build(vs VarStore, lr float64) (retVal Optimizer, err error){
|
||
|
// return defaultBuild(config, vs, lr)
|
||
|
// }
|
||
|
Build(vs *VarStore, lr float64) (*Optimizer, error)
|
||
|
}
|
||
|
|
||
|
// defaultBuild is `default` Build method for OptimizerConfig interface
|
||
|
func defaultBuild(config OptimizerConfig, vs *VarStore, lr float64) (*Optimizer, error) {
|
||
|
opt, err := config.buildCOpt(lr)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
names := make(map[string]struct{})
|
||
|
for name, v := range vs.vars {
|
||
|
if v.Trainable {
|
||
|
log.Info("Adding parameter", "name", name, "g", v.Group)
|
||
|
if err = opt.AddParameter(v.Tensor, v.Group); err != nil {
|
||
|
err = fmt.Errorf("Optimizer defaultBuild - AddParameter failed: %w\n", err)
|
||
|
return nil, err
|
||
|
}
|
||
|
}
|
||
|
names[name] = struct{}{}
|
||
|
}
|
||
|
|
||
|
return &Optimizer{
|
||
|
varstore: vs,
|
||
|
opt: opt,
|
||
|
variablesInOptimizer: names,
|
||
|
config: config,
|
||
|
stepCount: 0,
|
||
|
lr: 0,
|
||
|
}, nil
|
||
|
}
|
||
|
|
||
|
// SGD Optimizer:
|
||
|
//===============
|
||
|
|
||
|
// SGDConfig holds parameters for building the SGD (Stochastic Gradient Descent) optimizer.
|
||
|
type SGDConfig struct {
|
||
|
Momentum float64
|
||
|
Dampening float64
|
||
|
Wd float64
|
||
|
Nesterov bool
|
||
|
}
|
||
|
|
||
|
// DefaultSGDConfig creates SGDConfig with default values.
|
||
|
func DefaultSGDConfig() *SGDConfig {
|
||
|
return &SGDConfig{
|
||
|
Momentum: 0.0,
|
||
|
Dampening: 0.0,
|
||
|
Wd: 0.0,
|
||
|
Nesterov: false,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// NewSGD creates the configuration for a SGD optimizer with specified values
|
||
|
func NewSGDConfig(momentum, dampening, wd float64, nesterov bool) *SGDConfig {
|
||
|
return &SGDConfig{
|
||
|
Momentum: momentum,
|
||
|
Dampening: dampening,
|
||
|
Wd: wd,
|
||
|
Nesterov: nesterov,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Implement OptimizerConfig interface for SGDConfig
|
||
|
func (c *SGDConfig) buildCOpt(lr float64) (*ts.COptimizer, error) {
|
||
|
return ts.Sgd(lr, c.Momentum, c.Dampening, c.Wd, c.Nesterov)
|
||
|
}
|
||
|
|
||
|
func (c *SGDConfig) Build(vs *VarStore, lr float64) (*Optimizer, error) {
|
||
|
return defaultBuild(c, vs, lr)
|
||
|
}
|
||
|
|
||
|
// Adam optimizer:
|
||
|
// ===============
|
||
|
|
||
|
type AdamConfig struct {
|
||
|
Beta1 float64
|
||
|
Beta2 float64
|
||
|
Wd float64
|
||
|
}
|
||
|
|
||
|
// DefaultAdamConfig creates AdamConfig with default values
|
||
|
func DefaultAdamConfig() *AdamConfig {
|
||
|
return &AdamConfig{
|
||
|
Beta1: 0.9,
|
||
|
Beta2: 0.999,
|
||
|
Wd: 0.0,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// NewAdamConfig creates AdamConfig with specified values
|
||
|
func NewAdamConfig(beta1, beta2, wd float64) *AdamConfig {
|
||
|
return &AdamConfig{
|
||
|
Beta1: beta1,
|
||
|
Beta2: beta2,
|
||
|
Wd: wd,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Implement OptimizerConfig interface for AdamConfig
|
||
|
func (c *AdamConfig) buildCOpt(lr float64) (*ts.COptimizer, error) {
|
||
|
return ts.Adam(lr, c.Beta1, c.Beta2, c.Wd)
|
||
|
}
|
||
|
|
||
|
func (c *AdamConfig) Build(vs *VarStore, lr float64) (*Optimizer, error) {
|
||
|
return defaultBuild(c, vs, lr)
|
||
|
}
|
||
|
|
||
|
// AdamW optimizer:
|
||
|
// ===============
|
||
|
|
||
|
type AdamWConfig struct {
|
||
|
Beta1 float64
|
||
|
Beta2 float64
|
||
|
Wd float64
|
||
|
}
|
||
|
|
||
|
// DefaultAdamWConfig creates AdamWConfig with default values
|
||
|
func DefaultAdamWConfig() *AdamWConfig {
|
||
|
return &AdamWConfig{
|
||
|
Beta1: 0.9,
|
||
|
Beta2: 0.999,
|
||
|
Wd: 0.01,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// NewAdamWConfig creates AdamWConfig with specified values
|
||
|
func NewAdamWConfig(beta1, beta2, wd float64) *AdamWConfig {
|
||
|
return &AdamWConfig{
|
||
|
Beta1: beta1,
|
||
|
Beta2: beta2,
|
||
|
Wd: wd,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Implement OptimizerConfig interface for AdamWConfig
|
||
|
func (c *AdamWConfig) buildCOpt(lr float64) (*ts.COptimizer, error) {
|
||
|
return ts.AdamW(lr, c.Beta1, c.Beta2, c.Wd)
|
||
|
}
|
||
|
|
||
|
// Build builds AdamW optimizer
|
||
|
func (c *AdamWConfig) Build(vs *VarStore, lr float64) (*Optimizer, error) {
|
||
|
return defaultBuild(c, vs, lr)
|
||
|
}
|
||
|
|
||
|
// RMSProp optimizer:
|
||
|
// ===============
|
||
|
|
||
|
type RMSPropConfig struct {
|
||
|
Alpha float64
|
||
|
Eps float64
|
||
|
Wd float64
|
||
|
Momentum float64
|
||
|
Centered bool
|
||
|
}
|
||
|
|
||
|
// DefaultAdamConfig creates AdamConfig with default values
|
||
|
func DefaultRMSPropConfig() *RMSPropConfig {
|
||
|
return &RMSPropConfig{
|
||
|
Alpha: 0.99,
|
||
|
Eps: 1e-8,
|
||
|
Wd: 0.0,
|
||
|
Momentum: 0.0,
|
||
|
Centered: false,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// NewRMSPropConfig creates RMSPropConfig with specified values
|
||
|
func NewRMSPropConfig(alpha, eps, wd, momentum float64, centered bool) *RMSPropConfig {
|
||
|
return &RMSPropConfig{
|
||
|
Alpha: alpha,
|
||
|
Eps: eps,
|
||
|
Wd: wd,
|
||
|
Momentum: momentum,
|
||
|
Centered: centered,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Implement OptimizerConfig interface for RMSPropConfig
|
||
|
func (c *RMSPropConfig) buildCOpt(lr float64) (*ts.COptimizer, error) {
|
||
|
return ts.RmsProp(lr, c.Alpha, c.Eps, c.Wd, c.Momentum, c.Centered)
|
||
|
}
|
||
|
|
||
|
func (c *RMSPropConfig) Build(vs *VarStore, lr float64) (*Optimizer, error) {
|
||
|
return defaultBuild(c, vs, lr)
|
||
|
}
|
||
|
|
||
|
// Optimizer methods:
|
||
|
// ==================
|
||
|
|
||
|
func (opt *Optimizer) addMissingVariables() {
|
||
|
type param struct {
|
||
|
tensor *ts.Tensor
|
||
|
group uint
|
||
|
}
|
||
|
trainables := make(map[string]param)
|
||
|
for name, v := range opt.varstore.vars {
|
||
|
if v.Trainable {
|
||
|
trainables[name] = param{tensor: v.Tensor, group: v.Group}
|
||
|
}
|
||
|
}
|
||
|
missingVariables := len(trainables) - len(opt.variablesInOptimizer)
|
||
|
if missingVariables > 0 {
|
||
|
log.Info("INFO: Optimizer.addMissingVariables()...")
|
||
|
for name, x := range trainables {
|
||
|
if _, ok := opt.variablesInOptimizer[name]; !ok {
|
||
|
opt.opt.AddParameter(x.tensor, x.group)
|
||
|
opt.variablesInOptimizer[name] = struct{}{}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ZeroGrad zeroes the gradient for the tensors tracked by this optimizer.
|
||
|
func (opt *Optimizer) ZeroGrad() error {
|
||
|
if err := opt.opt.ZeroGrad(); err != nil {
|
||
|
err = fmt.Errorf("Optimizer.ZeroGrad() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// MustZeroGrad zeroes the gradient for the tensors tracked by this optimizer.
|
||
|
func (opt *Optimizer) MustZeroGrad() {
|
||
|
err := opt.ZeroGrad()
|
||
|
if err != nil {
|
||
|
log.Fatal(err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Clips gradient value at some specified maximum value.
|
||
|
func (opt *Optimizer) ClipGradValue(max float64) {
|
||
|
opt.varstore.Lock()
|
||
|
defer opt.varstore.Unlock()
|
||
|
|
||
|
for _, v := range opt.varstore.vars {
|
||
|
if v.Trainable {
|
||
|
// v.Tensor.MustGrad().Clamp_(ts.FloatScalar(-max), ts.FloatScalar(max))
|
||
|
gradTs := v.Tensor.MustGrad(false)
|
||
|
gradTs.Clamp_(ts.FloatScalar(-max), ts.FloatScalar(max))
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Step performs an optimization step, updating the tracked tensors based on their gradients.
|
||
|
func (opt *Optimizer) Step() error {
|
||
|
err := opt.opt.Step()
|
||
|
if err != nil {
|
||
|
err = fmt.Errorf("Optimizer.Step() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
opt.stepCount += 1
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// MustStep performs an optimization step, updating the tracked tensors based on their gradients.
|
||
|
func (opt *Optimizer) MustStep() {
|
||
|
err := opt.Step()
|
||
|
if err != nil {
|
||
|
log.Fatal(err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ResetStepCount set step count to zero.
|
||
|
func (opt *Optimizer) ResetStepCount() {
|
||
|
opt.stepCount = 0
|
||
|
}
|
||
|
|
||
|
// StepCount get current step count.
|
||
|
func (opt *Optimizer) StepCount() int {
|
||
|
return opt.stepCount
|
||
|
}
|
||
|
|
||
|
// BackwardStep applies a backward step pass, update the gradients, and performs an optimization step.
|
||
|
func (opt *Optimizer) BackwardStep(loss *ts.Tensor) error {
|
||
|
err := opt.opt.ZeroGrad()
|
||
|
if err != nil {
|
||
|
err = fmt.Errorf("Optimizer.BackwardStep() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
loss.MustBackward()
|
||
|
err = opt.opt.Step()
|
||
|
if err != nil {
|
||
|
err = fmt.Errorf("Optimizer.BackwardStep() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// MustBackwardStep applies a backward step pass, update the gradients, and performs an optimization step.
|
||
|
func (opt *Optimizer) MustBackwardStep(loss *ts.Tensor) {
|
||
|
err := opt.BackwardStep(loss)
|
||
|
if err != nil {
|
||
|
log.Fatal(err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// BackwardStepClip applies a backward step pass, update the gradients, and performs an optimization step.
|
||
|
//
|
||
|
// The gradients are clipped based on `max` before being applied.
|
||
|
func (opt *Optimizer) BackwardStepClip(loss *ts.Tensor, max float64) error {
|
||
|
err := opt.opt.ZeroGrad()
|
||
|
if err != nil {
|
||
|
err = fmt.Errorf("Optimizer.BackwardStepClip() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
loss.MustBackward()
|
||
|
opt.ClipGradValue(max)
|
||
|
err = opt.opt.Step()
|
||
|
if err != nil {
|
||
|
err = fmt.Errorf("Optimizer.BackwardStepClip() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// MustBackwardStepClip applies a backward step pass, update the gradients, and performs an optimization step.
|
||
|
//
|
||
|
// The gradients are clipped based on `max` before being applied.
|
||
|
func (opt *Optimizer) MustBackwardStepClip(loss *ts.Tensor, max float64) {
|
||
|
err := opt.BackwardStepClip(loss, max)
|
||
|
if err != nil {
|
||
|
log.Fatal(err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
type ClipOpts struct {
|
||
|
NormType float64
|
||
|
ErrorIfNonFinite bool
|
||
|
}
|
||
|
|
||
|
type ClipOpt func(*ClipOpts)
|
||
|
|
||
|
func defaultClipOpts() *ClipOpts {
|
||
|
return &ClipOpts{
|
||
|
NormType: 2.0,
|
||
|
ErrorIfNonFinite: false, // will switch to "true" in the future.
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func WithNormType(v float64) ClipOpt {
|
||
|
return func(o *ClipOpts) {
|
||
|
o.NormType = v
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func WithErrorIfNonFinite(v bool) ClipOpt {
|
||
|
return func(o *ClipOpts) {
|
||
|
o.ErrorIfNonFinite = v
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// / Clips gradient L2 norm over all trainable parameters.
|
||
|
//
|
||
|
// The norm is computed over all gradients together, as if they were
|
||
|
// concatenated into a single vector.
|
||
|
//
|
||
|
// / Args:
|
||
|
// - max: max norm of the gradient
|
||
|
// - o.NormType. Type of the used p-norm, can be "inf" for infinity norm. Default= 2.0
|
||
|
// - o.ErrorIfNonFinite bool. If true, throw error if total norm of the gradients from paramters is "nan", "inf" or "-inf". Default=false
|
||
|
// Returns: total norm of the parameters (viewed as a single vector)
|
||
|
// ref. https://github.com/pytorch/pytorch/blob/cb4aeff7d8e4c70bb638cf159878c5204d0cc2da/torch/nn/utils/clip_grad.py#L59
|
||
|
func (opt *Optimizer) ClipGradNorm(max float64, opts ...ClipOpt) error {
|
||
|
o := defaultClipOpts()
|
||
|
for _, option := range opts {
|
||
|
option(o)
|
||
|
}
|
||
|
|
||
|
opt.varstore.Lock()
|
||
|
defer opt.varstore.Unlock()
|
||
|
parameters := opt.varstore.TrainableVariables()
|
||
|
if len(parameters) == 0 {
|
||
|
// return ts.MustOfSlice([]float64{0.0}), nil
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
var (
|
||
|
norms []*ts.Tensor
|
||
|
totalNorm *ts.Tensor
|
||
|
)
|
||
|
|
||
|
device := opt.varstore.device
|
||
|
|
||
|
// FIXME. What about mixed-precision?
|
||
|
dtype := parameters[0].DType()
|
||
|
|
||
|
if o.NormType == math.Inf(1) {
|
||
|
for _, v := range opt.varstore.vars {
|
||
|
n := v.Tensor.MustGrad(false).MustDetach(true).MustAbs(true).MustMax(true).MustTo(device, true)
|
||
|
norms = append(norms, n)
|
||
|
}
|
||
|
// total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
|
||
|
totalNorm = ts.MustStack(norms, 0).MustMax(true)
|
||
|
} else {
|
||
|
for _, v := range opt.varstore.vars {
|
||
|
// x := v.Tensor.MustGrad(false).MustNorm(true)
|
||
|
|
||
|
// NOTE. tensor.Norm() is going to be deprecated. So use linalg_norm
|
||
|
// Ref. https://pytorch.org/docs/stable/generated/torch.linalg.norm.html#torch.linalg.norm
|
||
|
x := v.Tensor.MustGrad(false).MustDetach(true).MustLinalgNorm(ts.FloatScalar(o.NormType), nil, false, dtype, true)
|
||
|
norms = append(norms, x)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// totalNorm = ts.MustStack(norms, 0).MustNorm(true).MustAddScalar(ts.FloatScalar(1e-6), true)
|
||
|
// total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
|
||
|
totalNorm = ts.MustStack(norms, 0).MustLinalgNorm(ts.FloatScalar(o.NormType), nil, false, dtype, true)
|
||
|
for _, x := range norms {
|
||
|
x.MustDrop()
|
||
|
}
|
||
|
|
||
|
totalNormVal := totalNorm.Float64Values(true)[0]
|
||
|
// if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()):
|
||
|
if o.ErrorIfNonFinite && (math.IsNaN(totalNormVal) || math.IsInf(totalNormVal, 1)) {
|
||
|
err := fmt.Errorf("The total norm of order (%v) for gradients from 'parameters' is non-finite, so it cannot be clipped. To disable this error and scale the gradients by the non-finite norm anyway, set option.ErrorIfNonFinite= false", o.NormType)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// clip_coef = max_norm / (total_norm + 1e-6)
|
||
|
// clipCoefTs := ts.TensorFrom([]float64{max}).MustDiv(totalNorm, true)
|
||
|
clipCoef := max / (totalNormVal + 1e-6)
|
||
|
// NOTE: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so
|
||
|
// avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization
|
||
|
// when the gradients do not reside in CPU memory.
|
||
|
// clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
|
||
|
if clipCoef > 1.0 {
|
||
|
clipCoef = 1.0
|
||
|
}
|
||
|
for _, v := range opt.varstore.vars {
|
||
|
if v.Trainable {
|
||
|
// p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device))
|
||
|
// v.Tensor.MustGrad(false).MustDetach(true).MustMulScalar_(ts.FloatScalar(clipCoef))
|
||
|
v.Tensor.MustGrad(false).MustMulScalar_(ts.FloatScalar(clipCoef))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// BackwardStepClipNorm applies a backward step pass, update the gradients, and performs an optimization step.
|
||
|
//
|
||
|
// The gradients L2 norm is clipped based on `max`.
|
||
|
func (opt *Optimizer) BackwardStepClipNorm(loss *ts.Tensor, max float64, opts ...ClipOpt) error {
|
||
|
err := opt.opt.ZeroGrad()
|
||
|
if err != nil {
|
||
|
err := fmt.Errorf("Optimizer.BackwardStepClipNorm() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
err = loss.Backward()
|
||
|
if err != nil {
|
||
|
err := fmt.Errorf("Optimizer.BackwardStepClipNorm() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
err = opt.ClipGradNorm(max, opts...)
|
||
|
if err != nil {
|
||
|
err := fmt.Errorf("Optimizer.BackwardStepClipNorm() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
err = opt.Step()
|
||
|
if err != nil {
|
||
|
err := fmt.Errorf("Optimizer.BackwardStepClipNorm() failed: %w\n", err)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// MustBackwardStepClipNorm applies a backward step pass, update the gradients, and performs an optimization step.
|
||
|
//
|
||
|
// The gradients L2 norm is clipped based on `max`.
|
||
|
func (opt *Optimizer) MustBackwardStepClipNorm(loss *ts.Tensor, max float64, opts ...ClipOpt) {
|
||
|
err := opt.BackwardStepClipNorm(loss, max, opts...)
|
||
|
if err != nil {
|
||
|
log.Fatal(err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// SetLR sets the optimizer learning rate.
|
||
|
//
|
||
|
// NOTE. it sets a SINGLE value of learning rate for all parameter groups.
|
||
|
// Most of the time, there's one parameter group.
|
||
|
func (opt *Optimizer) SetLR(lr float64) {
|
||
|
err := opt.opt.SetLearningRate(lr)
|
||
|
if err != nil {
|
||
|
log.Fatalf("Optimizer - SetLR method call error: %v\n", err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (opt *Optimizer) GetLRs() []float64 {
|
||
|
lrs, err := opt.opt.GetLearningRates()
|
||
|
if err != nil {
|
||
|
log.Fatalf("Optimizer - GetLRs method call error: %v\n", err)
|
||
|
}
|
||
|
|
||
|
return lrs
|
||
|
}
|
||
|
|
||
|
// SetLRs sets learning rates for ALL parameter groups respectively.
|
||
|
func (opt *Optimizer) SetLRs(lrs []float64) {
|
||
|
err := opt.opt.SetLearningRates(lrs)
|
||
|
if err != nil {
|
||
|
log.Fatalf("Optimizer - SetLRs method call error: %v\n", err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// SetMomentum sets the optimizer momentum.
|
||
|
func (opt *Optimizer) SetMomentum(m float64) {
|
||
|
err := opt.opt.SetMomentum(m)
|
||
|
if err != nil {
|
||
|
log.Fatalf("Optimizer - SetMomentum method call error: %v\n", err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (opt *Optimizer) ParamGroupNum() int {
|
||
|
ngroup, err := opt.opt.ParamGroupNum()
|
||
|
if err != nil {
|
||
|
log.Fatalf("Optimizer - ParamGroupNum method call error: %v\n", err)
|
||
|
}
|
||
|
|
||
|
return int(ngroup)
|
||
|
}
|
||
|
|
||
|
func (opt *Optimizer) AddParamGroup(tensors []*ts.Tensor) {
|
||
|
err := opt.opt.AddParamGroup(tensors)
|
||
|
if err != nil {
|
||
|
log.Fatalf("Optimizer - ParamGroupNum method call error: %v\n", err)
|
||
|
}
|
||
|
}
|