fyp/views/py/python_model_template.py

60 lines
1.3 KiB
Python
Raw Normal View History

import tensorflow as tf
import random
from tensorflow import keras
from keras import layers, losses, optimizers
seed = random.randint(0, 100000000)
batch_size = 100
dataset = keras.utils.image_dataset_from_directory(
"{{ .DataDir }}",
color_mode="rgb",
validation_split=0.2,
label_mode='int',
seed=seed,
subset="training",
image_size=({{ .Size }}),
batch_size=batch_size)
dataset_validation = keras.utils.image_dataset_from_directory(
"{{ .DataDir }}",
color_mode="rgb",
validation_split=0.2,
label_mode='int',
seed=seed,
subset="validation",
image_size=({{ .Size }}),
batch_size=batch_size)
model = keras.Sequential([
{{- range .Layers }}
{{- if eq .LayerType 1}}
layers.Rescaling(1./255),
{{- else if eq .LayerType 2 }}
2023-09-27 13:55:29 +01:00
layers.Dense({{ .Shape }}, activation="sigmoid"),
{{- else if eq .LayerType 3}}
layers.Flatten(),
{{- else }}
ERROR
{{- end }}
{{- end }}
])
2023-09-27 13:55:29 +01:00
model.compile(
loss=losses.SparseCategoricalCrossentropy(),
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
2023-09-27 21:20:39 +01:00
his = model.fit(dataset, validation_data= dataset_validation, epochs=70)
2023-09-27 13:55:29 +01:00
acc = his.history["accuracy"]
f = open("accuracy.val", "w")
f.write(str(acc[-1]))
f.close()
2023-09-27 21:20:39 +01:00
tf.saved_model.save(model, "model")
# model.save("model.keras", save_format="tf")