1344 lines
52 KiB
Plaintext
1344 lines
52 KiB
Plaintext
|
% $ biblatex auxiliary file $
|
||
|
% $ biblatex bbl format version 3.2 $
|
||
|
% Do not modify the above lines!
|
||
|
%
|
||
|
% This is an auxiliary file used by the 'biblatex' package.
|
||
|
% This file may safely be deleted. It will be recreated by
|
||
|
% biber as required.
|
||
|
%
|
||
|
\begingroup
|
||
|
\makeatletter
|
||
|
\@ifundefined{ver@biblatex.sty}
|
||
|
{\@latex@error
|
||
|
{Missing 'biblatex' package}
|
||
|
{The bibliography requires the 'biblatex' package.}
|
||
|
\aftergroup\endinput}
|
||
|
{}
|
||
|
\endgroup
|
||
|
|
||
|
|
||
|
\refsection{0}
|
||
|
\datalist[entry]{none/global//global/global}
|
||
|
\entry{amazon-rekognition}{misc}{}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{Amazon Web Services, Inc}
|
||
|
\field{month}{12}
|
||
|
\field{note}{[Online; accessed 18. Dec. 2023]}
|
||
|
\field{title}{{What Is Amazon Rekognition? (1:42)}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://aws.amazon.com/rekognition
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://aws.amazon.com/rekognition
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{amazon-rekognition-custom-labels}{misc}{}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{12}
|
||
|
\field{note}{[Online; accessed 18. Dec. 2023]}
|
||
|
\field{title}{{What is Amazon Rekognition Custom Labels? - Rekognition}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/what-is.html?pg=ln&sec=ft
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/what-is.html?pg=ln&sec=ft
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{amazon-rekognition-custom-labels-training}{misc}{}
|
||
|
\field{sortinit}{3}
|
||
|
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{12}
|
||
|
\field{note}{[Online; accessed 18. Dec. 2023]}
|
||
|
\field{title}{{Training an Amazon Rekognition Custom Labels model - Rekognition}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/training-model.html#tm-console
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/training-model.html#tm-console
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{google-vision-api}{online}{}
|
||
|
\name{author}{1}{}{%
|
||
|
{{hash=8b36e9207c24c76e6719268e49201d94}{%
|
||
|
family={Google},
|
||
|
familyi={G\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{8b36e9207c24c76e6719268e49201d94}
|
||
|
\strng{fullhash}{8b36e9207c24c76e6719268e49201d94}
|
||
|
\strng{bibnamehash}{8b36e9207c24c76e6719268e49201d94}
|
||
|
\strng{authorbibnamehash}{8b36e9207c24c76e6719268e49201d94}
|
||
|
\strng{authornamehash}{8b36e9207c24c76e6719268e49201d94}
|
||
|
\strng{authorfullhash}{8b36e9207c24c76e6719268e49201d94}
|
||
|
\field{sortinit}{4}
|
||
|
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{title}{Vision {AI} | Google Cloud}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://cloud.google.com/vision?hl=en
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://cloud.google.com/vision?hl=en
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{google-vision-price-sheet}{misc}{}
|
||
|
\field{sortinit}{5}
|
||
|
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{Google Cloud}
|
||
|
\field{month}{12}
|
||
|
\field{note}{[Online; accessed 20. Dec. 2023]}
|
||
|
\field{title}{{Pricing {$\vert$} Vertex AI Vision {$\vert$} Google Cloud}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://cloud.google.com/vision-ai/pricing
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://cloud.google.com/vision-ai/pricing
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{google-vision-product-recognizer-guide}{misc}{}
|
||
|
\field{sortinit}{6}
|
||
|
\field{sortinithash}{b33bc299efb3c36abec520a4c896a66d}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{12}
|
||
|
\field{note}{[Online; accessed 20. Dec. 2023]}
|
||
|
\field{title}{{Product Recognizer guide}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://cloud.google.com/vision-ai/docs/product-recognizer
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://cloud.google.com/vision-ai/docs/product-recognizer
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{mnist}{article}{}
|
||
|
\name{author}{1}{}{%
|
||
|
{{hash=2f5fbdc5c3cf91f62a64663cd72397b3}{%
|
||
|
family={Deng},
|
||
|
familyi={D\bibinitperiod},
|
||
|
given={Li},
|
||
|
giveni={L\bibinitperiod}}}%
|
||
|
}
|
||
|
\list{publisher}{1}{%
|
||
|
{IEEE}%
|
||
|
}
|
||
|
\strng{namehash}{2f5fbdc5c3cf91f62a64663cd72397b3}
|
||
|
\strng{fullhash}{2f5fbdc5c3cf91f62a64663cd72397b3}
|
||
|
\strng{bibnamehash}{2f5fbdc5c3cf91f62a64663cd72397b3}
|
||
|
\strng{authorbibnamehash}{2f5fbdc5c3cf91f62a64663cd72397b3}
|
||
|
\strng{authornamehash}{2f5fbdc5c3cf91f62a64663cd72397b3}
|
||
|
\strng{authorfullhash}{2f5fbdc5c3cf91f62a64663cd72397b3}
|
||
|
\field{sortinit}{7}
|
||
|
\field{sortinithash}{108d0be1b1bee9773a1173443802c0a3}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{IEEE Signal Processing Magazine}
|
||
|
\field{number}{6}
|
||
|
\field{title}{The mnist database of handwritten digit images for machine learning research}
|
||
|
\field{volume}{29}
|
||
|
\field{year}{2012}
|
||
|
\field{pages}{141\bibrangedash 142}
|
||
|
\range{pages}{2}
|
||
|
\endentry
|
||
|
\entry{mist-high-accuracy}{article}{}
|
||
|
\name{author}{5}{}{%
|
||
|
{{hash=ec3e94c9a6fa7655f35a1faac83a709d}{%
|
||
|
family={An},
|
||
|
familyi={A\bibinitperiod},
|
||
|
given={Sanghyeon},
|
||
|
giveni={S\bibinitperiod}}}%
|
||
|
{{hash=7adc548246fbb4e1d8a091761cb1af95}{%
|
||
|
family={Lee},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Min\bibnamedelima Jun},
|
||
|
giveni={M\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
|
||
|
{{hash=d9730f4c920b674f1b84c99a703b797e}{%
|
||
|
family={Park},
|
||
|
familyi={P\bibinitperiod},
|
||
|
given={Sanglee},
|
||
|
giveni={S\bibinitperiod}}}%
|
||
|
{{hash=164495751deac883eb2c56aa3db5ac5f}{%
|
||
|
family={Yang},
|
||
|
familyi={Y\bibinitperiod},
|
||
|
given={Heerin},
|
||
|
giveni={H\bibinitperiod}}}%
|
||
|
{{hash=f463ebb21b49a0a93666c7254b0a49fb}{%
|
||
|
family={So},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Jungmin},
|
||
|
giveni={J\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{c9a0af631b7f33929b8a52219b998925}
|
||
|
\strng{fullhash}{e30223f61e9d3e240aec91c5f315b95e}
|
||
|
\strng{bibnamehash}{e30223f61e9d3e240aec91c5f315b95e}
|
||
|
\strng{authorbibnamehash}{e30223f61e9d3e240aec91c5f315b95e}
|
||
|
\strng{authornamehash}{c9a0af631b7f33929b8a52219b998925}
|
||
|
\strng{authorfullhash}{e30223f61e9d3e240aec91c5f315b95e}
|
||
|
\field{sortinit}{8}
|
||
|
\field{sortinithash}{a231b008ebf0ecbe0b4d96dcc159445f}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{eprinttype}{arXiv}
|
||
|
\field{journaltitle}{CoRR}
|
||
|
\field{title}{An Ensemble of Simple Convolutional Neural Network Models for {MNIST} Digit Recognition}
|
||
|
\field{volume}{abs/2008.10400}
|
||
|
\field{year}{2020}
|
||
|
\verb{eprint}
|
||
|
\verb 2008.10400
|
||
|
\endverb
|
||
|
\verb{urlraw}
|
||
|
\verb https://arxiv.org/abs/2008.10400
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://arxiv.org/abs/2008.10400
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{lecun-98}{article}{}
|
||
|
\name{author}{4}{}{%
|
||
|
{{hash=9ae8dc3a930d73e11e1b22a9ef065055}{%
|
||
|
family={LeCun},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Y.},
|
||
|
giveni={Y\bibinitperiod}}}%
|
||
|
{{hash=bbfb0f3936c83b7b099561e6f0e32ef3}{%
|
||
|
family={Bottou},
|
||
|
familyi={B\bibinitperiod},
|
||
|
given={L.},
|
||
|
giveni={L\bibinitperiod}}}%
|
||
|
{{hash=419350ebbeb4eba5351469f378dee007}{%
|
||
|
family={Bengio},
|
||
|
familyi={B\bibinitperiod},
|
||
|
given={Y.},
|
||
|
giveni={Y\bibinitperiod}}}%
|
||
|
{{hash=00f962380d25c4d7f23fa6c7e926c3ed}{%
|
||
|
family={Haffner},
|
||
|
familyi={H\bibinitperiod},
|
||
|
given={P.},
|
||
|
giveni={P\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{a8a87a12538dbdb246c3bc01b5a3dcc2}
|
||
|
\strng{fullhash}{46d2e204dc0bc08d019fcff6774ca34f}
|
||
|
\strng{bibnamehash}{46d2e204dc0bc08d019fcff6774ca34f}
|
||
|
\strng{authorbibnamehash}{46d2e204dc0bc08d019fcff6774ca34f}
|
||
|
\strng{authornamehash}{a8a87a12538dbdb246c3bc01b5a3dcc2}
|
||
|
\strng{authorfullhash}{46d2e204dc0bc08d019fcff6774ca34f}
|
||
|
\field{sortinit}{9}
|
||
|
\field{sortinithash}{0a5ebc79d83c96b6579069544c73c7d4}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{Proceedings of the IEEE}
|
||
|
\field{month}{11}
|
||
|
\field{number}{11}
|
||
|
\field{title}{Gradient-Based Learning Applied to Document Recognition}
|
||
|
\field{volume}{86}
|
||
|
\field{year}{1998}
|
||
|
\field{pages}{2278\bibrangedash 2324}
|
||
|
\range{pages}{47}
|
||
|
\endentry
|
||
|
\entry{imagenet}{inproceedings}{}
|
||
|
\name{author}{6}{}{%
|
||
|
{{hash=0ae7fdc13773f928525f673b05f37149}{%
|
||
|
family={Deng},
|
||
|
familyi={D\bibinitperiod},
|
||
|
given={Jia},
|
||
|
giveni={J\bibinitperiod}}}%
|
||
|
{{hash=7d87c5957b07153c7f18918b92830bf8}{%
|
||
|
family={Dong},
|
||
|
familyi={D\bibinitperiod},
|
||
|
given={Wei},
|
||
|
giveni={W\bibinitperiod}}}%
|
||
|
{{hash=d5670b2600fea169724521e252d9d09d}{%
|
||
|
family={Socher},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Richard},
|
||
|
giveni={R\bibinitperiod}}}%
|
||
|
{{hash=2afdae52015b97674d81efea449edce2}{%
|
||
|
family={Li},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Li-Jia},
|
||
|
giveni={L\bibinithyphendelim J\bibinitperiod}}}%
|
||
|
{{hash=4838f7fdd28d5cefb28f3b3c734976d4}{%
|
||
|
family={Li},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Kai},
|
||
|
giveni={K\bibinitperiod}}}%
|
||
|
{{hash=cd00ce5bc45f687c432e52e0fa1a7aa6}{%
|
||
|
family={Fei-Fei},
|
||
|
familyi={F\bibinithyphendelim F\bibinitperiod},
|
||
|
given={Li},
|
||
|
giveni={L\bibinitperiod}}}%
|
||
|
}
|
||
|
\list{organization}{1}{%
|
||
|
{Ieee}%
|
||
|
}
|
||
|
\strng{namehash}{990420f755e01028377fcad1464c9706}
|
||
|
\strng{fullhash}{a16fdd05c52c264b99fe98f4a5e24c60}
|
||
|
\strng{bibnamehash}{a16fdd05c52c264b99fe98f4a5e24c60}
|
||
|
\strng{authorbibnamehash}{a16fdd05c52c264b99fe98f4a5e24c60}
|
||
|
\strng{authornamehash}{990420f755e01028377fcad1464c9706}
|
||
|
\strng{authorfullhash}{a16fdd05c52c264b99fe98f4a5e24c60}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{booktitle}{2009 IEEE conference on computer vision and pattern recognition}
|
||
|
\field{title}{Imagenet: A large-scale hierarchical image database}
|
||
|
\field{year}{2009}
|
||
|
\field{pages}{248\bibrangedash 255}
|
||
|
\range{pages}{8}
|
||
|
\endentry
|
||
|
\entry{krizhevsky2012imagenet}{article}{}
|
||
|
\name{author}{3}{}{%
|
||
|
{{hash=c5e3a676e2ac1164b3afcd539c131fc9}{%
|
||
|
family={Krizhevsky},
|
||
|
familyi={K\bibinitperiod},
|
||
|
given={Alex},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=8d569d1d5b8b5a7836017a98b430f959}{%
|
||
|
family={Sutskever},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Ilya},
|
||
|
giveni={I\bibinitperiod}}}%
|
||
|
{{hash=813bd95fe553e6079cd53a567b238287}{%
|
||
|
family={Hinton},
|
||
|
familyi={H\bibinitperiod},
|
||
|
given={Geoffrey\bibnamedelima E},
|
||
|
giveni={G\bibinitperiod\bibinitdelim E\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{dd291871bfa8ee64447232f1cca429aa}
|
||
|
\strng{fullhash}{1a23c09aa65b3c2ade45ed18d8127375}
|
||
|
\strng{bibnamehash}{1a23c09aa65b3c2ade45ed18d8127375}
|
||
|
\strng{authorbibnamehash}{1a23c09aa65b3c2ade45ed18d8127375}
|
||
|
\strng{authornamehash}{dd291871bfa8ee64447232f1cca429aa}
|
||
|
\strng{authorfullhash}{1a23c09aa65b3c2ade45ed18d8127375}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{Advances in neural information processing systems}
|
||
|
\field{title}{Imagenet classification with deep convolutional neural networks}
|
||
|
\field{volume}{25}
|
||
|
\field{year}{2012}
|
||
|
\endentry
|
||
|
\entry{resnet-152}{article}{}
|
||
|
\name{author}{6}{}{%
|
||
|
{{hash=5f03ce4b1164a38128cb989bcb5142cd}{%
|
||
|
family={Wang},
|
||
|
familyi={W\bibinitperiod},
|
||
|
given={Qilong},
|
||
|
giveni={Q\bibinitperiod}}}%
|
||
|
{{hash=76bcb192eca5ac9560d1bf6c8cefad99}{%
|
||
|
family={Wu},
|
||
|
familyi={W\bibinitperiod},
|
||
|
given={Banggu},
|
||
|
giveni={B\bibinitperiod}}}%
|
||
|
{{hash=3186f5ead79be8894d8c19bcc4c5822e}{%
|
||
|
family={Zhu},
|
||
|
familyi={Z\bibinitperiod},
|
||
|
given={Pengfei},
|
||
|
giveni={P\bibinitperiod}}}%
|
||
|
{{hash=e1ed1573fe71f793460e20e08134ca17}{%
|
||
|
family={Li},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Peihua},
|
||
|
giveni={P\bibinitperiod}}}%
|
||
|
{{hash=509ab736fbc2f1e10f41c1bddb2531ed}{%
|
||
|
family={Zuo},
|
||
|
familyi={Z\bibinitperiod},
|
||
|
given={Wangmeng},
|
||
|
giveni={W\bibinitperiod}}}%
|
||
|
{{hash=b8a0fb91ee1e348c1963577d64c2b566}{%
|
||
|
family={Hu},
|
||
|
familyi={H\bibinitperiod},
|
||
|
given={Qinghua},
|
||
|
giveni={Q\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{ec89b10ac64649f9959ff86aa3160671}
|
||
|
\strng{fullhash}{a61f51e99239d4d969872b0436c3bc29}
|
||
|
\strng{bibnamehash}{a61f51e99239d4d969872b0436c3bc29}
|
||
|
\strng{authorbibnamehash}{a61f51e99239d4d969872b0436c3bc29}
|
||
|
\strng{authornamehash}{ec89b10ac64649f9959ff86aa3160671}
|
||
|
\strng{authorfullhash}{a61f51e99239d4d969872b0436c3bc29}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{eprinttype}{arXiv}
|
||
|
\field{journaltitle}{CoRR}
|
||
|
\field{title}{ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks}
|
||
|
\field{volume}{abs/1910.03151}
|
||
|
\field{year}{2019}
|
||
|
\verb{eprint}
|
||
|
\verb 1910.03151
|
||
|
\endverb
|
||
|
\verb{urlraw}
|
||
|
\verb http://arxiv.org/abs/1910.03151
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb http://arxiv.org/abs/1910.03151
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{efficientnet}{article}{}
|
||
|
\name{author}{2}{}{%
|
||
|
{{hash=1e7d6abb8225099acc71f672b9ec336e}{%
|
||
|
family={Tan},
|
||
|
familyi={T\bibinitperiod},
|
||
|
given={Mingxing},
|
||
|
giveni={M\bibinitperiod}}}%
|
||
|
{{hash=c636f146591d51579a8119b777394878}{%
|
||
|
family={Le},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Quoc\bibnamedelima V.},
|
||
|
giveni={Q\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{fullhash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{bibnamehash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{authorbibnamehash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{authornamehash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{authorfullhash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\field{extraname}{1}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{eprinttype}{arXiv}
|
||
|
\field{journaltitle}{CoRR}
|
||
|
\field{title}{EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}
|
||
|
\field{volume}{abs/1905.11946}
|
||
|
\field{year}{2019}
|
||
|
\verb{eprint}
|
||
|
\verb 1905.11946
|
||
|
\endverb
|
||
|
\verb{urlraw}
|
||
|
\verb http://arxiv.org/abs/1905.11946
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb http://arxiv.org/abs/1905.11946
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{resnet}{misc}{}
|
||
|
\name{author}{4}{}{%
|
||
|
{{hash=6b4b60e909e78633945f3f9c9dc83e01}{%
|
||
|
family={He},
|
||
|
familyi={H\bibinitperiod},
|
||
|
given={Kaiming},
|
||
|
giveni={K\bibinitperiod}}}%
|
||
|
{{hash=5e72bc22dbcf0984c6d113d280e36990}{%
|
||
|
family={Zhang},
|
||
|
familyi={Z\bibinitperiod},
|
||
|
given={Xiangyu},
|
||
|
giveni={X\bibinitperiod}}}%
|
||
|
{{hash=bb295293acacd54387339079ebbe4ead}{%
|
||
|
family={Ren},
|
||
|
familyi={R\bibinitperiod},
|
||
|
given={Shaoqing},
|
||
|
giveni={S\bibinitperiod}}}%
|
||
|
{{hash=f85751488058842b5777c7b4074077b5}{%
|
||
|
family={Sun},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Jian},
|
||
|
giveni={J\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{6edb98fe38401d2fe4a026f5ce6e8451}
|
||
|
\strng{fullhash}{42c4b52dc3a62cebabbc11c73e1afb53}
|
||
|
\strng{bibnamehash}{42c4b52dc3a62cebabbc11c73e1afb53}
|
||
|
\strng{authorbibnamehash}{42c4b52dc3a62cebabbc11c73e1afb53}
|
||
|
\strng{authornamehash}{6edb98fe38401d2fe4a026f5ce6e8451}
|
||
|
\strng{authorfullhash}{42c4b52dc3a62cebabbc11c73e1afb53}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{eprintclass}{cs.CV}
|
||
|
\field{eprinttype}{arXiv}
|
||
|
\field{title}{Deep Residual Learning for Image Recognition}
|
||
|
\field{year}{2015}
|
||
|
\verb{eprint}
|
||
|
\verb 1512.03385
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{going-deeper-with-convolutions}{misc}{}
|
||
|
\name{author}{9}{}{%
|
||
|
{{hash=ed568d9c3bb059e6bf22899fbf170f86}{%
|
||
|
family={Szegedy},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Christian},
|
||
|
giveni={C\bibinitperiod}}}%
|
||
|
{{hash=c0e0d23e2d09e45e6f51cc2bcea6d9f9}{%
|
||
|
family={Liu},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Wei},
|
||
|
giveni={W\bibinitperiod}}}%
|
||
|
{{hash=9fce03efe6b3331a1b93ed2e7c0da9d5}{%
|
||
|
family={Jia},
|
||
|
familyi={J\bibinitperiod},
|
||
|
given={Yangqing},
|
||
|
giveni={Y\bibinitperiod}}}%
|
||
|
{{hash=15f5333df96deaf51c72d065bded37d8}{%
|
||
|
family={Sermanet},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Pierre},
|
||
|
giveni={P\bibinitperiod}}}%
|
||
|
{{hash=698ee61a2f3fa29734204496d2d36aef}{%
|
||
|
family={Reed},
|
||
|
familyi={R\bibinitperiod},
|
||
|
given={Scott},
|
||
|
giveni={S\bibinitperiod}}}%
|
||
|
{{hash=c1826f3465579186aff299a9b0e16ed7}{%
|
||
|
family={Anguelov},
|
||
|
familyi={A\bibinitperiod},
|
||
|
given={Dragomir},
|
||
|
giveni={D\bibinitperiod}}}%
|
||
|
{{hash=8bbc4c5d96f205bada839e74e0202146}{%
|
||
|
family={Erhan},
|
||
|
familyi={E\bibinitperiod},
|
||
|
given={Dumitru},
|
||
|
giveni={D\bibinitperiod}}}%
|
||
|
{{hash=8051922e7bd286f884bfbd1023ef62f5}{%
|
||
|
family={Vanhoucke},
|
||
|
familyi={V\bibinitperiod},
|
||
|
given={Vincent},
|
||
|
giveni={V\bibinitperiod}}}%
|
||
|
{{hash=aa04c4d6213a1e867b1650e298cb2668}{%
|
||
|
family={Rabinovich},
|
||
|
familyi={R\bibinitperiod},
|
||
|
given={Andrew},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||
|
\strng{fullhash}{64fbaf3c8a6b53523f74f0087b58e7e6}
|
||
|
\strng{bibnamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||
|
\strng{authorbibnamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||
|
\strng{authornamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||
|
\strng{authorfullhash}{64fbaf3c8a6b53523f74f0087b58e7e6}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{eprintclass}{cs.CV}
|
||
|
\field{eprinttype}{arXiv}
|
||
|
\field{title}{Going Deeper with Convolutions}
|
||
|
\field{year}{2014}
|
||
|
\verb{eprint}
|
||
|
\verb 1409.4842
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{very-deep-convolution-networks-for-large-scale-image-recognition}{misc}{}
|
||
|
\name{author}{2}{}{%
|
||
|
{{hash=9d16b7284df92c9adaee86c37ab992df}{%
|
||
|
family={Simonyan},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Karen},
|
||
|
giveni={K\bibinitperiod}}}%
|
||
|
{{hash=c72fc39e94030f67717052309266a44d}{%
|
||
|
family={Zisserman},
|
||
|
familyi={Z\bibinitperiod},
|
||
|
given={Andrew},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{25d2f3c4577a6632d37f0126cc781232}
|
||
|
\strng{fullhash}{25d2f3c4577a6632d37f0126cc781232}
|
||
|
\strng{bibnamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||
|
\strng{authorbibnamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||
|
\strng{authornamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||
|
\strng{authorfullhash}{25d2f3c4577a6632d37f0126cc781232}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{eprintclass}{cs.CV}
|
||
|
\field{eprinttype}{arXiv}
|
||
|
\field{title}{Very Deep Convolutional Networks for Large-Scale Image Recognition}
|
||
|
\field{year}{2015}
|
||
|
\verb{eprint}
|
||
|
\verb 1409.1556
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{efficient-net}{misc}{}
|
||
|
\name{author}{2}{}{%
|
||
|
{{hash=1e7d6abb8225099acc71f672b9ec336e}{%
|
||
|
family={Tan},
|
||
|
familyi={T\bibinitperiod},
|
||
|
given={Mingxing},
|
||
|
giveni={M\bibinitperiod}}}%
|
||
|
{{hash=c636f146591d51579a8119b777394878}{%
|
||
|
family={Le},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Quoc\bibnamedelima V.},
|
||
|
giveni={Q\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{fullhash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{bibnamehash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{authorbibnamehash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{authornamehash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\strng{authorfullhash}{d029e8131f7a0bef056d7edc726f1529}
|
||
|
\field{extraname}{2}
|
||
|
\field{sortinit}{1}
|
||
|
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{eprintclass}{cs.LG}
|
||
|
\field{eprinttype}{arXiv}
|
||
|
\field{title}{EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}
|
||
|
\field{year}{2020}
|
||
|
\verb{eprint}
|
||
|
\verb 1905.11946
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{inverted-bottleneck-mobilenet}{inproceedings}{}
|
||
|
\name{author}{5}{}{%
|
||
|
{{hash=8f90fd131c2bbfde4d0e9fdd7ed4ea8b}{%
|
||
|
family={Sandler},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Mark},
|
||
|
giveni={M\bibinitperiod}}}%
|
||
|
{{hash=315c4166fc1f7cb66324a7f0d82827cd}{%
|
||
|
family={Howard},
|
||
|
familyi={H\bibinitperiod},
|
||
|
given={Andrew},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=d767e8e4d733bcf728bcdf2c193462f7}{%
|
||
|
family={Zhu},
|
||
|
familyi={Z\bibinitperiod},
|
||
|
given={Menglong},
|
||
|
giveni={M\bibinitperiod}}}%
|
||
|
{{hash=48f4090a93cf9f445057a9d6defe7973}{%
|
||
|
family={Zhmoginov},
|
||
|
familyi={Z\bibinitperiod},
|
||
|
given={Andrey},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=9dddfcfd529634a150ee38ee5c0203d7}{%
|
||
|
family={Chen},
|
||
|
familyi={C\bibinitperiod},
|
||
|
given={Liang-Chieh},
|
||
|
giveni={L\bibinithyphendelim C\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{70179dd377b16c4cfcc0748ef0bd028a}
|
||
|
\strng{fullhash}{8d58d04315a5e1c06300772330b235d7}
|
||
|
\strng{bibnamehash}{8d58d04315a5e1c06300772330b235d7}
|
||
|
\strng{authorbibnamehash}{8d58d04315a5e1c06300772330b235d7}
|
||
|
\strng{authornamehash}{70179dd377b16c4cfcc0748ef0bd028a}
|
||
|
\strng{authorfullhash}{8d58d04315a5e1c06300772330b235d7}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{booktitle}{2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition}
|
||
|
\field{title}{MobileNetV2: Inverted Residuals and Linear Bottlenecks}
|
||
|
\field{year}{2018}
|
||
|
\field{pages}{4510\bibrangedash 4520}
|
||
|
\range{pages}{11}
|
||
|
\verb{doi}
|
||
|
\verb 10.1109/CVPR.2018.00474
|
||
|
\endverb
|
||
|
\keyw{Manifolds;Neural networks;Computer architecture;Standards;Computational modeling;Task analysis}
|
||
|
\endentry
|
||
|
\entry{tensorflow2015-whitepaper}{misc}{}
|
||
|
\name{author}{40}{}{%
|
||
|
{{hash=396d6419316ec52f4c63b2f85912b61b}{%
|
||
|
family={Martín\bibnamedelima Abadi},
|
||
|
familyi={M\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
|
||
|
{{hash=f337a7c116835c22bb206d2f0d7c70e0}{%
|
||
|
family={Ashish\bibnamedelima Agarwal},
|
||
|
familyi={A\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
|
||
|
{{hash=84ac9fcb6c15dcd79c092bc8e20586ba}{%
|
||
|
family={Paul\bibnamedelima Barham},
|
||
|
familyi={P\bibinitperiod\bibinitdelim B\bibinitperiod}}}%
|
||
|
{{hash=d8574748e3086e0b279a58cdba71763d}{%
|
||
|
family={Eugene\bibnamedelima Brevdo},
|
||
|
familyi={E\bibinitperiod\bibinitdelim B\bibinitperiod}}}%
|
||
|
{{hash=c0b56f741b5a5bddfe77f1881c3cc67a}{%
|
||
|
family={Zhifeng\bibnamedelima Chen},
|
||
|
familyi={Z\bibinitperiod\bibinitdelim C\bibinitperiod}}}%
|
||
|
{{hash=8b8dd2e01366c855f42e47027cf23e98}{%
|
||
|
family={Craig\bibnamedelima Citro},
|
||
|
familyi={C\bibinitperiod\bibinitdelim C\bibinitperiod}}}%
|
||
|
{{hash=978a7d9601bf09e03d1bb3f6cce7a0ce}{%
|
||
|
family={Greg\bibnamedelima S.\bibnamedelimi Corrado},
|
||
|
familyi={G\bibinitperiod\bibinitdelim S\bibinitperiod\bibinitdelim C\bibinitperiod}}}%
|
||
|
{{hash=3b500b0dfd88e6e151d29108fdcb82f0}{%
|
||
|
family={Andy\bibnamedelima Davis},
|
||
|
familyi={A\bibinitperiod\bibinitdelim D\bibinitperiod}}}%
|
||
|
{{hash=2fd376ea3b3a3da11704c0ee86753dcf}{%
|
||
|
family={Jeffrey\bibnamedelima Dean},
|
||
|
familyi={J\bibinitperiod\bibinitdelim D\bibinitperiod}}}%
|
||
|
{{hash=5b34e641dd8a00f97c6242ae0353eb90}{%
|
||
|
family={Matthieu\bibnamedelima Devin},
|
||
|
familyi={M\bibinitperiod\bibinitdelim D\bibinitperiod}}}%
|
||
|
{{hash=5b4490947d4e91359646ce3c93cbd2f7}{%
|
||
|
family={Sanjay\bibnamedelima Ghemawat},
|
||
|
familyi={S\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
|
||
|
{{hash=1fdef10b94ee122ef6136197f99e3df3}{%
|
||
|
family={Ian\bibnamedelima Goodfellow},
|
||
|
familyi={I\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
|
||
|
{{hash=166ae8a0b435eded68e39e9e2d2a1ee8}{%
|
||
|
family={Andrew\bibnamedelima Harp},
|
||
|
familyi={A\bibinitperiod\bibinitdelim H\bibinitperiod}}}%
|
||
|
{{hash=7e9f7006151cf312bc133568336c68c6}{%
|
||
|
family={Geoffrey\bibnamedelima Irving},
|
||
|
familyi={G\bibinitperiod\bibinitdelim I\bibinitperiod}}}%
|
||
|
{{hash=08c1890e1c33279b8c63c71fa8f19263}{%
|
||
|
family={Michael\bibnamedelima Isard},
|
||
|
familyi={M\bibinitperiod\bibinitdelim I\bibinitperiod}}}%
|
||
|
{{hash=9fce03efe6b3331a1b93ed2e7c0da9d5}{%
|
||
|
family={Jia},
|
||
|
familyi={J\bibinitperiod},
|
||
|
given={Yangqing},
|
||
|
giveni={Y\bibinitperiod}}}%
|
||
|
{{hash=c0c0eea5379268c0c5b68732c90984b6}{%
|
||
|
family={Rafal\bibnamedelima Jozefowicz},
|
||
|
familyi={R\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
|
||
|
{{hash=cff46cb4603a73d83b11ea7a9ded9d79}{%
|
||
|
family={Lukasz\bibnamedelima Kaiser},
|
||
|
familyi={L\bibinitperiod\bibinitdelim K\bibinitperiod}}}%
|
||
|
{{hash=d088e0f635523b8b5b18662331e4f44a}{%
|
||
|
family={Manjunath\bibnamedelima Kudlur},
|
||
|
familyi={M\bibinitperiod\bibinitdelim K\bibinitperiod}}}%
|
||
|
{{hash=1c24291ae15b979c82aa09a33790cb62}{%
|
||
|
family={Josh\bibnamedelima Levenberg},
|
||
|
familyi={J\bibinitperiod\bibinitdelim L\bibinitperiod}}}%
|
||
|
{{hash=796a3a98ff7545fe10f6a4c17ba016fa}{%
|
||
|
family={Dandelion\bibnamedelima Mané},
|
||
|
familyi={D\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
|
{{hash=1ee98d232eb1fc1208a8f8ca649e970b}{%
|
||
|
family={Rajat\bibnamedelima Monga},
|
||
|
familyi={R\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
|
{{hash=b2a15ec3d90955ece50ea26d31100b9a}{%
|
||
|
family={Sherry\bibnamedelima Moore},
|
||
|
familyi={S\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
|
{{hash=1494c573fadad736c58cf1119ac59239}{%
|
||
|
family={Derek\bibnamedelima Murray},
|
||
|
familyi={D\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
|
{{hash=ecf58eb1684af6cba2c1f126405eedab}{%
|
||
|
family={Chris\bibnamedelima Olah},
|
||
|
familyi={C\bibinitperiod\bibinitdelim O\bibinitperiod}}}%
|
||
|
{{hash=9f43befd94cd09a9aaa7ea8489405a83}{%
|
||
|
family={Mike\bibnamedelima Schuster},
|
||
|
familyi={M\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
|
||
|
{{hash=4712800a228b1179529b9f6e0d1b1838}{%
|
||
|
family={Jonathon\bibnamedelima Shlens},
|
||
|
familyi={J\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
|
||
|
{{hash=41ad6ff6c026d5a3730269072b31caf1}{%
|
||
|
family={Benoit\bibnamedelima Steiner},
|
||
|
familyi={B\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
|
||
|
{{hash=b02f7871db6fc5524cec4ce38e104410}{%
|
||
|
family={Ilya\bibnamedelima Sutskever},
|
||
|
familyi={I\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
|
||
|
{{hash=63288446e47b1d383f522ede84aa6fcc}{%
|
||
|
family={Kunal\bibnamedelima Talwar},
|
||
|
familyi={K\bibinitperiod\bibinitdelim T\bibinitperiod}}}%
|
||
|
{{hash=1dec75595b55bf77971f6a932d146b81}{%
|
||
|
family={Paul\bibnamedelima Tucker},
|
||
|
familyi={P\bibinitperiod\bibinitdelim T\bibinitperiod}}}%
|
||
|
{{hash=b6680dbb0176cb9bd87a3b26fa6f5cfb}{%
|
||
|
family={Vincent\bibnamedelima Vanhoucke},
|
||
|
familyi={V\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
|
||
|
{{hash=e030c9d199c66657e26138be29814d81}{%
|
||
|
family={Vijay\bibnamedelima Vasudevan},
|
||
|
familyi={V\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
|
||
|
{{hash=04426b798803cfaf3e8aa9280a5d0a58}{%
|
||
|
family={Fernanda\bibnamedelima Viégas},
|
||
|
familyi={F\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
|
||
|
{{hash=fa7242e11c7d955de2ac1be94ca29073}{%
|
||
|
family={Oriol\bibnamedelima Vinyals},
|
||
|
familyi={O\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
|
||
|
{{hash=8c9ee8f70a3c3d97f85efd01c4e9cbe6}{%
|
||
|
family={Pete\bibnamedelima Warden},
|
||
|
familyi={P\bibinitperiod\bibinitdelim W\bibinitperiod}}}%
|
||
|
{{hash=8e4243c228c72a5e5279e31252887b32}{%
|
||
|
family={Martin\bibnamedelima Wattenberg},
|
||
|
familyi={M\bibinitperiod\bibinitdelim W\bibinitperiod}}}%
|
||
|
{{hash=c6a6eb2597f23589fc9141bdda275996}{%
|
||
|
family={Martin\bibnamedelima Wicke},
|
||
|
familyi={M\bibinitperiod\bibinitdelim W\bibinitperiod}}}%
|
||
|
{{hash=3ea39e6dc6ef47029ae996c7e63f1a48}{%
|
||
|
family={Yuan\bibnamedelima Yu},
|
||
|
familyi={Y\bibinitperiod\bibinitdelim Y\bibinitperiod}}}%
|
||
|
{{hash=b69feb3a3d59a312b20dbef0b1d2d6de}{%
|
||
|
family={Xiaoqiang\bibnamedelima Zheng},
|
||
|
familyi={X\bibinitperiod\bibinitdelim Z\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{7fdd865be502254047a3b2638dc0cfeb}
|
||
|
\strng{fullhash}{9b332dc9b33a2f6316d71d525269bd0f}
|
||
|
\strng{bibnamehash}{7fdd865be502254047a3b2638dc0cfeb}
|
||
|
\strng{authorbibnamehash}{7fdd865be502254047a3b2638dc0cfeb}
|
||
|
\strng{authornamehash}{7fdd865be502254047a3b2638dc0cfeb}
|
||
|
\strng{authorfullhash}{9b332dc9b33a2f6316d71d525269bd0f}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{note}{Software available from tensorflow.org}
|
||
|
\field{title}{{TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems}
|
||
|
\field{year}{2015}
|
||
|
\verb{urlraw}
|
||
|
\verb https://www.tensorflow.org/
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://www.tensorflow.org/
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{pytorch}{incollection}{}
|
||
|
\name{author}{21}{}{%
|
||
|
{{hash=56bf0b340039cf8594436a624ff548a9}{%
|
||
|
family={Paszke},
|
||
|
familyi={P\bibinitperiod},
|
||
|
given={Adam},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=4ba5062e5919c814aceec188d54c01f2}{%
|
||
|
family={Gross},
|
||
|
familyi={G\bibinitperiod},
|
||
|
given={Sam},
|
||
|
giveni={S\bibinitperiod}}}%
|
||
|
{{hash=e5dfae4582081d649e3a0d5342050016}{%
|
||
|
family={Massa},
|
||
|
familyi={M\bibinitperiod},
|
||
|
given={Francisco},
|
||
|
giveni={F\bibinitperiod}}}%
|
||
|
{{hash=b5815e1692fa2d0c1f44eecf509bd7c4}{%
|
||
|
family={Lerer},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Adam},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=b75383e6b48c8360c7a60031424c85cf}{%
|
||
|
family={Bradbury},
|
||
|
familyi={B\bibinitperiod},
|
||
|
given={James},
|
||
|
giveni={J\bibinitperiod}}}%
|
||
|
{{hash=f897ed422c34d95af2e22778dfc2607e}{%
|
||
|
family={Chanan},
|
||
|
familyi={C\bibinitperiod},
|
||
|
given={Gregory},
|
||
|
giveni={G\bibinitperiod}}}%
|
||
|
{{hash=046269e070246feb6f394141db80ed87}{%
|
||
|
family={Killeen},
|
||
|
familyi={K\bibinitperiod},
|
||
|
given={Trevor},
|
||
|
giveni={T\bibinitperiod}}}%
|
||
|
{{hash=c40352c194e60a3ef458ee7e8685afb5}{%
|
||
|
family={Lin},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Zeming},
|
||
|
giveni={Z\bibinitperiod}}}%
|
||
|
{{hash=6e45f49ec618e619efad90c8e8a61f0c}{%
|
||
|
family={Gimelshein},
|
||
|
familyi={G\bibinitperiod},
|
||
|
given={Natalia},
|
||
|
giveni={N\bibinitperiod}}}%
|
||
|
{{hash=f65a80959d520337ae99a0798515036c}{%
|
||
|
family={Antiga},
|
||
|
familyi={A\bibinitperiod},
|
||
|
given={Luca},
|
||
|
giveni={L\bibinitperiod}}}%
|
||
|
{{hash=954cf7680b6ce14813973eccdca3c4bc}{%
|
||
|
family={Desmaison},
|
||
|
familyi={D\bibinitperiod},
|
||
|
given={Alban},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=c1b8f8db68d6667b9f2f9a9a3567721b}{%
|
||
|
family={Kopf},
|
||
|
familyi={K\bibinitperiod},
|
||
|
given={Andreas},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=b9e701339e56fd0b171145b08288a1b7}{%
|
||
|
family={Yang},
|
||
|
familyi={Y\bibinitperiod},
|
||
|
given={Edward},
|
||
|
giveni={E\bibinitperiod}}}%
|
||
|
{{hash=3f9535be511fd2fa346093e63b8e61a0}{%
|
||
|
family={DeVito},
|
||
|
familyi={D\bibinitperiod},
|
||
|
given={Zachary},
|
||
|
giveni={Z\bibinitperiod}}}%
|
||
|
{{hash=d814afaa50b9e22ab92cc9f8f9a9e43a}{%
|
||
|
family={Raison},
|
||
|
familyi={R\bibinitperiod},
|
||
|
given={Martin},
|
||
|
giveni={M\bibinitperiod}}}%
|
||
|
{{hash=3feeeebee8583ecc208f7fb3e0a55068}{%
|
||
|
family={Tejani},
|
||
|
familyi={T\bibinitperiod},
|
||
|
given={Alykhan},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=e18536d5cb7543731fbf2ca1a4908732}{%
|
||
|
family={Chilamkurthy},
|
||
|
familyi={C\bibinitperiod},
|
||
|
given={Sasank},
|
||
|
giveni={S\bibinitperiod}}}%
|
||
|
{{hash=0a0b028c6b85c46f368317d0c5bfe3a0}{%
|
||
|
family={Steiner},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Benoit},
|
||
|
giveni={B\bibinitperiod}}}%
|
||
|
{{hash=998a001f16bb57c079c1d5afb1cb02c8}{%
|
||
|
family={Fang},
|
||
|
familyi={F\bibinitperiod},
|
||
|
given={Lu},
|
||
|
giveni={L\bibinitperiod}}}%
|
||
|
{{hash=3f19c633bbfb847db6a0e71d3659eacd}{%
|
||
|
family={Bai},
|
||
|
familyi={B\bibinitperiod},
|
||
|
given={Junjie},
|
||
|
giveni={J\bibinitperiod}}}%
|
||
|
{{hash=8ef51a0906e47d2b4472c4e714ed598f}{%
|
||
|
family={Chintala},
|
||
|
familyi={C\bibinitperiod},
|
||
|
given={Soumith},
|
||
|
giveni={S\bibinitperiod}}}%
|
||
|
}
|
||
|
\list{publisher}{1}{%
|
||
|
{Curran Associates, Inc.}%
|
||
|
}
|
||
|
\strng{namehash}{724e74fc18651eb78eb82fbcd1d9dfb1}
|
||
|
\strng{fullhash}{ba1e2da270d08cb8de2856498a028fed}
|
||
|
\strng{bibnamehash}{724e74fc18651eb78eb82fbcd1d9dfb1}
|
||
|
\strng{authorbibnamehash}{724e74fc18651eb78eb82fbcd1d9dfb1}
|
||
|
\strng{authornamehash}{724e74fc18651eb78eb82fbcd1d9dfb1}
|
||
|
\strng{authorfullhash}{ba1e2da270d08cb8de2856498a028fed}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{booktitle}{Advances in Neural Information Processing Systems 32}
|
||
|
\field{title}{PyTorch: An Imperative Style, High-Performance Deep Learning Library}
|
||
|
\field{year}{2019}
|
||
|
\field{pages}{8024\bibrangedash 8035}
|
||
|
\range{pages}{12}
|
||
|
\verb{urlraw}
|
||
|
\verb http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{pytorch-vs-tensorflow-1}{misc}{}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{12}
|
||
|
\field{note}{[Online; accessed 14. May 2024]}
|
||
|
\field{title}{{PyTorch vs TensorFlow: Deep Learning Frameworks [2024]}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://www.knowledgehut.com/blog/data-science/pytorch-vs-tensorflow
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://www.knowledgehut.com/blog/data-science/pytorch-vs-tensorflow
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{pytorch-vs-tensorflow-2}{article}{}
|
||
|
\name{author}{1}{}{%
|
||
|
{{hash=5079643d4e5ebf5ceb5dfb40ee8525d4}{%
|
||
|
family={O'Connor},
|
||
|
familyi={O\bibinitperiod},
|
||
|
given={Ryan},
|
||
|
giveni={R\bibinitperiod}}}%
|
||
|
}
|
||
|
\list{publisher}{1}{%
|
||
|
{News, Tutorials, AI Research}%
|
||
|
}
|
||
|
\strng{namehash}{5079643d4e5ebf5ceb5dfb40ee8525d4}
|
||
|
\strng{fullhash}{5079643d4e5ebf5ceb5dfb40ee8525d4}
|
||
|
\strng{bibnamehash}{5079643d4e5ebf5ceb5dfb40ee8525d4}
|
||
|
\strng{authorbibnamehash}{5079643d4e5ebf5ceb5dfb40ee8525d4}
|
||
|
\strng{authornamehash}{5079643d4e5ebf5ceb5dfb40ee8525d4}
|
||
|
\strng{authorfullhash}{5079643d4e5ebf5ceb5dfb40ee8525d4}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{News, Tutorials, AI Research}
|
||
|
\field{month}{4}
|
||
|
\field{title}{{PyTorch vs TensorFlow in 2023}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{json-api-usage-stats}{article}{}
|
||
|
\name{author}{1}{}{%
|
||
|
{{hash=17d848142becf7c7ee4a0e0da00ed40b}{%
|
||
|
family={Hnatyuk},
|
||
|
familyi={H\bibinitperiod},
|
||
|
given={Kolya},
|
||
|
giveni={K\bibinitperiod}}}%
|
||
|
}
|
||
|
\list{publisher}{1}{%
|
||
|
{MarketSplash}%
|
||
|
}
|
||
|
\strng{namehash}{17d848142becf7c7ee4a0e0da00ed40b}
|
||
|
\strng{fullhash}{17d848142becf7c7ee4a0e0da00ed40b}
|
||
|
\strng{bibnamehash}{17d848142becf7c7ee4a0e0da00ed40b}
|
||
|
\strng{authorbibnamehash}{17d848142becf7c7ee4a0e0da00ed40b}
|
||
|
\strng{authornamehash}{17d848142becf7c7ee4a0e0da00ed40b}
|
||
|
\strng{authorfullhash}{17d848142becf7c7ee4a0e0da00ed40b}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{MarketSplash}
|
||
|
\field{month}{10}
|
||
|
\field{title}{{130+ API Statistics: Usage, Growth {\&} Security}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://marketsplash.com/api-statistics
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://marketsplash.com/api-statistics
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{nginx}{misc}{}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{NGINX}
|
||
|
\field{month}{2}
|
||
|
\field{note}{[Online; accessed 12. Mar. 2024]}
|
||
|
\field{title}{{Advanced Load Balancer, Web Server, {\&} Reverse Proxy - NGINX}}
|
||
|
\field{year}{2024}
|
||
|
\verb{urlraw}
|
||
|
\verb https://www.nginx.com
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://www.nginx.com
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{postgressql}{misc}{}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{PostgreSQL}
|
||
|
\field{month}{5}
|
||
|
\field{note}{[Online; accessed 14. May 2024]}
|
||
|
\field{title}{{PostgreSQL}}
|
||
|
\field{year}{2024}
|
||
|
\verb{urlraw}
|
||
|
\verb https://www.postgresql.org
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://www.postgresql.org
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{svelte}{misc}{}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{3}
|
||
|
\field{note}{[Online; accessed 12. Mar. 2024]}
|
||
|
\field{title}{{Svelte {\ifmmode\bullet\else•\fi} Cybernetically enhanced web apps}}
|
||
|
\field{year}{2024}
|
||
|
\verb{urlraw}
|
||
|
\verb https://svelte.dev
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://svelte.dev
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{state-of-js-2022}{misc}{}
|
||
|
\field{sortinit}{2}
|
||
|
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{11}
|
||
|
\field{note}{[Online; accessed 12. Mar. 2024]}
|
||
|
\field{title}{{State of JavaScript 2022: Front-end Frameworks}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://2022.stateofjs.com/en-US/libraries/front-end-frameworks
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://2022.stateofjs.com/en-US/libraries/front-end-frameworks
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{js-frontend-frameworks-performance}{misc}{}
|
||
|
\field{sortinit}{3}
|
||
|
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{3}
|
||
|
\field{note}{[Online; accessed 12. Mar. 2024]}
|
||
|
\field{title}{{Interactive Results}}
|
||
|
\field{year}{2024}
|
||
|
\verb{urlraw}
|
||
|
\verb https://krausest.github.io/js-framework-benchmark/current.html
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://krausest.github.io/js-framework-benchmark/current.html
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{svelte-kit}{misc}{}
|
||
|
\field{sortinit}{3}
|
||
|
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{3}
|
||
|
\field{note}{[Online; accessed 12. Mar. 2024]}
|
||
|
\field{title}{{SvelteKit {\ifmmode\bullet\else•\fi} Web development, streamlined}}
|
||
|
\field{year}{2024}
|
||
|
\verb{urlraw}
|
||
|
\verb https://kit.svelte.dev
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://kit.svelte.dev
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{bycrpt}{article}{}
|
||
|
\name{author}{2}{}{%
|
||
|
{{hash=60b1af3e10b3553c9b4eb4055120912c}{%
|
||
|
family={Provos},
|
||
|
familyi={P\bibinitperiod},
|
||
|
given={Niels},
|
||
|
giveni={N\bibinitperiod}}}%
|
||
|
{{hash=f74609e259322f9c7b6a2c775a7d8e29}{%
|
||
|
family={Mazieres},
|
||
|
familyi={M\bibinitperiod},
|
||
|
given={David},
|
||
|
giveni={D\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{cf7a7a797d9c87cf2ba4c4ca7ff0c17c}
|
||
|
\strng{fullhash}{cf7a7a797d9c87cf2ba4c4ca7ff0c17c}
|
||
|
\strng{bibnamehash}{cf7a7a797d9c87cf2ba4c4ca7ff0c17c}
|
||
|
\strng{authorbibnamehash}{cf7a7a797d9c87cf2ba4c4ca7ff0c17c}
|
||
|
\strng{authornamehash}{cf7a7a797d9c87cf2ba4c4ca7ff0c17c}
|
||
|
\strng{authorfullhash}{cf7a7a797d9c87cf2ba4c4ca7ff0c17c}
|
||
|
\field{sortinit}{3}
|
||
|
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{03}
|
||
|
\field{title}{A Future-Adaptable Password Scheme}
|
||
|
\field{year}{2001}
|
||
|
\endentry
|
||
|
\entry{go}{misc}{}
|
||
|
\field{sortinit}{3}
|
||
|
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{11}
|
||
|
\field{note}{[Online; accessed 1. Nov. 2023]}
|
||
|
\field{title}{{The Go Programming Language}}
|
||
|
\field{year}{2023}
|
||
|
\verb{urlraw}
|
||
|
\verb https://go.dev
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://go.dev
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{cifar10}{report}{}
|
||
|
\name{author}{1}{}{%
|
||
|
{{hash=c5e3a676e2ac1164b3afcd539c131fc9}{%
|
||
|
family={Krizhevsky},
|
||
|
familyi={K\bibinitperiod},
|
||
|
given={Alex},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{c5e3a676e2ac1164b3afcd539c131fc9}
|
||
|
\strng{fullhash}{c5e3a676e2ac1164b3afcd539c131fc9}
|
||
|
\strng{bibnamehash}{c5e3a676e2ac1164b3afcd539c131fc9}
|
||
|
\strng{authorbibnamehash}{c5e3a676e2ac1164b3afcd539c131fc9}
|
||
|
\strng{authornamehash}{c5e3a676e2ac1164b3afcd539c131fc9}
|
||
|
\strng{authorfullhash}{c5e3a676e2ac1164b3afcd539c131fc9}
|
||
|
\field{sortinit}{3}
|
||
|
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{title}{Learning multiple layers of features from tiny images}
|
||
|
\field{type}{techreport}
|
||
|
\field{year}{2009}
|
||
|
\endentry
|
||
|
\entry{stl10}{misc}{}
|
||
|
\field{sortinit}{3}
|
||
|
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{11}
|
||
|
\field{note}{[Online; accessed 11. May 2024]}
|
||
|
\field{title}{{STL-10 dataset}}
|
||
|
\field{year}{2015}
|
||
|
\verb{urlraw}
|
||
|
\verb https://cs.stanford.edu/~acoates/stl10
|
||
|
\endverb
|
||
|
\verb{url}
|
||
|
\verb https://cs.stanford.edu/~acoates/stl10
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{artbench}{article}{}
|
||
|
\name{author}{4}{}{%
|
||
|
{{hash=7bba0fa6a38a6bcb53161bc627f0e8f0}{%
|
||
|
family={Liao},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Peiyuan},
|
||
|
giveni={P\bibinitperiod}}}%
|
||
|
{{hash=bc48cf0ef11559dbf52ea1eeb6a1fe6b}{%
|
||
|
family={Li},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Xiuyu},
|
||
|
giveni={X\bibinitperiod}}}%
|
||
|
{{hash=6c9b1bbb5e6bfa9eb298cf2adaf2fe6e}{%
|
||
|
family={Liu},
|
||
|
familyi={L\bibinitperiod},
|
||
|
given={Xihui},
|
||
|
giveni={X\bibinitperiod}}}%
|
||
|
{{hash=994177386e5a63171a7be588e97df7e5}{%
|
||
|
family={Keutzer},
|
||
|
familyi={K\bibinitperiod},
|
||
|
given={Kurt},
|
||
|
giveni={K\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{08a0f45af14d162ba0122f203b8ad810}
|
||
|
\strng{fullhash}{112b6926c6bf43c13d55af2ea8fde5e2}
|
||
|
\strng{bibnamehash}{112b6926c6bf43c13d55af2ea8fde5e2}
|
||
|
\strng{authorbibnamehash}{112b6926c6bf43c13d55af2ea8fde5e2}
|
||
|
\strng{authornamehash}{08a0f45af14d162ba0122f203b8ad810}
|
||
|
\strng{authorfullhash}{112b6926c6bf43c13d55af2ea8fde5e2}
|
||
|
\field{sortinit}{3}
|
||
|
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{arXiv preprint arXiv:2206.11404}
|
||
|
\field{title}{The ArtBench Dataset: Benchmarking Generative Models with Artworks}
|
||
|
\field{year}{2022}
|
||
|
\endentry
|
||
|
\entry{caltech256}{misc}{}
|
||
|
\name{author}{3}{}{%
|
||
|
{{hash=0c276668bd6739ab142e84d4de9000da}{%
|
||
|
family={Griffin},
|
||
|
familyi={G\bibinitperiod},
|
||
|
given={Gregory},
|
||
|
giveni={G\bibinitperiod}}}%
|
||
|
{{hash=9f4b2bda38961146065556b1d28f38ab}{%
|
||
|
family={Holub},
|
||
|
familyi={H\bibinitperiod},
|
||
|
given={Alex},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
{{hash=e52876f830a8a20786ff3e4d7dd6f083}{%
|
||
|
family={Perona},
|
||
|
familyi={P\bibinitperiod},
|
||
|
given={Pietro},
|
||
|
giveni={P\bibinitperiod}}}%
|
||
|
}
|
||
|
\list{publisher}{1}{%
|
||
|
{CaltechDATA}%
|
||
|
}
|
||
|
\strng{namehash}{5983e22273ff6957ba259a0f7d1141bc}
|
||
|
\strng{fullhash}{1b5a4898a33fca8d61b05ac9d9fd8c0a}
|
||
|
\strng{bibnamehash}{1b5a4898a33fca8d61b05ac9d9fd8c0a}
|
||
|
\strng{authorbibnamehash}{1b5a4898a33fca8d61b05ac9d9fd8c0a}
|
||
|
\strng{authornamehash}{5983e22273ff6957ba259a0f7d1141bc}
|
||
|
\strng{authorfullhash}{1b5a4898a33fca8d61b05ac9d9fd8c0a}
|
||
|
\field{sortinit}{4}
|
||
|
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{month}{4}
|
||
|
\field{title}{Caltech 256}
|
||
|
\field{year}{2022}
|
||
|
\verb{doi}
|
||
|
\verb 10.22002/D1.20087
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{fgvca}{report}{}
|
||
|
\name{author}{5}{}{%
|
||
|
{{hash=b1fb544937854da3ec8ec4f8109e846d}{%
|
||
|
family={Maji},
|
||
|
familyi={M\bibinitperiod},
|
||
|
given={S.},
|
||
|
giveni={S\bibinitperiod}}}%
|
||
|
{{hash=66af1ecffa9fdc06f0e4ac2c3f2e4124}{%
|
||
|
family={Kannala},
|
||
|
familyi={K\bibinitperiod},
|
||
|
given={J.},
|
||
|
giveni={J\bibinitperiod}}}%
|
||
|
{{hash=912e9620e6b1bb780e26082faac6a619}{%
|
||
|
family={Rahtu},
|
||
|
familyi={R\bibinitperiod},
|
||
|
given={E.},
|
||
|
giveni={E\bibinitperiod}}}%
|
||
|
{{hash=7b37b33590b6ced45c1ce1cddab2ef7a}{%
|
||
|
family={Blaschko},
|
||
|
familyi={B\bibinitperiod},
|
||
|
given={M.},
|
||
|
giveni={M\bibinitperiod}}}%
|
||
|
{{hash=0ec8712a7d032edd8ddc33c250c0784f}{%
|
||
|
family={Vedaldi},
|
||
|
familyi={V\bibinitperiod},
|
||
|
given={A.},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{4734aac49e2aa46b278616fcc2d66280}
|
||
|
\strng{fullhash}{4929dc1922cbfb934b74d90436a4ded6}
|
||
|
\strng{bibnamehash}{4929dc1922cbfb934b74d90436a4ded6}
|
||
|
\strng{authorbibnamehash}{4929dc1922cbfb934b74d90436a4ded6}
|
||
|
\strng{authornamehash}{4734aac49e2aa46b278616fcc2d66280}
|
||
|
\strng{authorfullhash}{4929dc1922cbfb934b74d90436a4ded6}
|
||
|
\field{sortinit}{4}
|
||
|
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{eprintclass}{cs-cv}
|
||
|
\field{eprinttype}{arXiv}
|
||
|
\field{title}{Fine-Grained Visual Classification of Aircraft}
|
||
|
\field{type}{techreport}
|
||
|
\field{year}{2013}
|
||
|
\verb{eprint}
|
||
|
\verb 1306.5151
|
||
|
\endverb
|
||
|
\endentry
|
||
|
\entry{fooddataset}{article}{}
|
||
|
\name{author}{5}{}{%
|
||
|
{{hash=9745e23b5afda022dab01c159a454bb2}{%
|
||
|
family={Kaur},
|
||
|
familyi={K\bibinitperiod},
|
||
|
given={Parneet},
|
||
|
giveni={P\bibinitperiod}}}%
|
||
|
{{hash=5582bf1be9db7a164fe4a89365a4420b}{%
|
||
|
family={Sikka},
|
||
|
familyi={S\bibinitperiod},
|
||
|
given={Karan},
|
||
|
giveni={K\bibinitperiod}}}%
|
||
|
{{hash=47ad65c82b1de7d642988df185d7d8ea}{%
|
||
|
family={Wang},
|
||
|
familyi={W\bibinitperiod},
|
||
|
given={Weijun},
|
||
|
giveni={W\bibinitperiod}}}%
|
||
|
{{hash=4d59c02623535d66620842635043b3b7}{%
|
||
|
family={Belongie},
|
||
|
familyi={B\bibinitperiod},
|
||
|
given={serge},
|
||
|
giveni={s\bibinitperiod}}}%
|
||
|
{{hash=2478c221c08a4d32c950a414c383fb08}{%
|
||
|
family={Divakaran},
|
||
|
familyi={D\bibinitperiod},
|
||
|
given={Ajay},
|
||
|
giveni={A\bibinitperiod}}}%
|
||
|
}
|
||
|
\strng{namehash}{9bbebb9e370b0e4d2c8850515561bfbd}
|
||
|
\strng{fullhash}{ee23ed313476a626198320adcc67e276}
|
||
|
\strng{bibnamehash}{ee23ed313476a626198320adcc67e276}
|
||
|
\strng{authorbibnamehash}{ee23ed313476a626198320adcc67e276}
|
||
|
\strng{authornamehash}{9bbebb9e370b0e4d2c8850515561bfbd}
|
||
|
\strng{authorfullhash}{ee23ed313476a626198320adcc67e276}
|
||
|
\field{sortinit}{4}
|
||
|
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
|
\field{labelnamesource}{author}
|
||
|
\field{labeltitlesource}{title}
|
||
|
\field{journaltitle}{arXiv preprint arXiv:1907.06167}
|
||
|
\field{title}{{FoodX-251: A Dataset for Fine-grained Food Classification}}
|
||
|
\field{year}{2019}
|
||
|
\endentry
|
||
|
\enddatalist
|
||
|
\endrefsection
|
||
|
\endinput
|
||
|
|