7059 lines
1.9 MiB
Plaintext
7059 lines
1.9 MiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "YLLecc85VRCL"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Introduction & Import Necessary Setup\n",
|
|||
|
"In this labsheet, we'll delve into the fascinating world of autoencoders (AEs), a type of neural network renowned for its ability to compress and reconstruct data. Autoencoders work by first encoding input data, such as images, into a compact feature vector through an encoder network. This process effectively distills the essence of the data into a smaller, more manageable form. The feature vector, often referred to as the \"bottleneck,\" plays a crucial role in this compression process, allowing us to represent the input data with fewer features.\n",
|
|||
|
"\n",
|
|||
|
"Following compression, a second neural network, known as the decoder, takes over to reconstruct the original data from the compressed feature vector. This remarkable ability to compress and then reconstruct data makes autoencoders extremely valuable in various applications, including data compression and image comparison at a more meaningful level than mere pixel-by-pixel analysis.\n",
|
|||
|
"\n",
|
|||
|
"Moreover, our exploration will not stop at the autoencoder framework itself. We will also introduce the concept of \"deconvolution\" (also known as transposed convolution), a powerful operator used to enlarge feature maps in both height and width dimensions. Deconvolution networks are indispensable in scenarios where we begin with a compact feature vector and aim to generate a full-sized image. This technique is pivotal in various advanced neural network applications, such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and super-resolution.\n",
|
|||
|
"\n",
|
|||
|
"To kick things off, we'll start by importing our standard libraries, setting the stage for our deep dive into the inner workings and applications of autoencoders."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 1,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "4e2G_wAgIWxD",
|
|||
|
"outputId": "a8fc0cbc-1aa7-4dd6-a94e-cf5320483c9f"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/tmp/ipykernel_192718/407458918.py:11: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n",
|
|||
|
" set_matplotlib_formats('svg', 'pdf') # For export\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Device: cuda:0\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"## Standard libraries\n",
|
|||
|
"import os\n",
|
|||
|
"import json\n",
|
|||
|
"import math\n",
|
|||
|
"import numpy as np\n",
|
|||
|
"\n",
|
|||
|
"## Imports for plotting\n",
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"%matplotlib inline\n",
|
|||
|
"from IPython.display import set_matplotlib_formats\n",
|
|||
|
"set_matplotlib_formats('svg', 'pdf') # For export\n",
|
|||
|
"from matplotlib.colors import to_rgb\n",
|
|||
|
"import matplotlib\n",
|
|||
|
"matplotlib.rcParams['lines.linewidth'] = 2.0\n",
|
|||
|
"## Progress bar\n",
|
|||
|
"from tqdm.notebook import tqdm\n",
|
|||
|
"\n",
|
|||
|
"## PyTorch\n",
|
|||
|
"import torch\n",
|
|||
|
"import torch.nn as nn\n",
|
|||
|
"import torch.nn.functional as F\n",
|
|||
|
"import torch.utils.data as data\n",
|
|||
|
"import torch.optim as optim\n",
|
|||
|
"# Torchvision\n",
|
|||
|
"import torchvision\n",
|
|||
|
"from torchvision.datasets import CIFAR10\n",
|
|||
|
"from torchvision import transforms\n",
|
|||
|
"\n",
|
|||
|
"DATASET_PATH = \"dataset\"\n",
|
|||
|
"\n",
|
|||
|
"device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",
|
|||
|
"print(\"Device:\", device)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "INLuLKepWdvC"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Download and setup the dataset\n",
|
|||
|
"In this labsheet, our focus shifts to the CIFAR10 dataset, a collection known for its rich, colored images. Each image within CIFAR10 is equipped with 3 color channels and boasts a resolution of 32x32 pixels. This characteristic is particularly advantageous when working with autoencoders, as they are not bound by the constraints of probabilistic image modeling.\n",
|
|||
|
"\n",
|
|||
|
"Should you already have the CIFAR10 dataset downloaded in a different directory, it's important to adjust the DATASET_PATH variable accordingly. This step ensures you avoid unnecessary additional downloads, streamlining your workflow and allowing you to dive into the practical exercises more swiftly."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 105,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "yH_BjGbuJIrJ",
|
|||
|
"outputId": "fc3e192f-fd42-4cd6-a5f8-82971331940b"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Files already downloaded and verified\n",
|
|||
|
"Files already downloaded and verified\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"ename": "AttributeError",
|
|||
|
"evalue": "'list' object has no attribute 'DataLoader'",
|
|||
|
"output_type": "error",
|
|||
|
"traceback": [
|
|||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
|||
|
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
|||
|
"Cell \u001b[0;32mIn[105], line 13\u001b[0m\n\u001b[1;32m 10\u001b[0m test_set \u001b[38;5;241m=\u001b[39m CIFAR10(root\u001b[38;5;241m=\u001b[39mDATASET_PATH, train\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, transform\u001b[38;5;241m=\u001b[39mtransform, download\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# We define a set of data loaders that we can use for various purposes later.\u001b[39;00m\n\u001b[0;32m---> 13\u001b[0m train_loader \u001b[38;5;241m=\u001b[39m \u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataLoader\u001b[49m(train_set, batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m256\u001b[39m, shuffle\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, drop_last\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, pin_memory\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, num_workers\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m4\u001b[39m)\n\u001b[1;32m 14\u001b[0m val_loader \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39mDataLoader(val_set, batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m256\u001b[39m, shuffle\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, drop_last\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, num_workers\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m4\u001b[39m)\n\u001b[1;32m 15\u001b[0m test_loader \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39mDataLoader(test_set, batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m256\u001b[39m, shuffle\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, drop_last\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, num_workers\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m4\u001b[39m)\n",
|
|||
|
"\u001b[0;31mAttributeError\u001b[0m: 'list' object has no attribute 'DataLoader'"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Transformations applied on each image => only make them a tensor\n",
|
|||
|
"transform = transforms.Compose([transforms.ToTensor(),\n",
|
|||
|
" transforms.Normalize((0.5,),(0.5,))])\n",
|
|||
|
"\n",
|
|||
|
"# Loading the training dataset. We need to split it into a training and validation part\n",
|
|||
|
"train_dataset = CIFAR10(root=DATASET_PATH, train=True, transform=transform, download=True)\n",
|
|||
|
"train_set, val_set = torch.utils.data.random_split(train_dataset, [45000, 5000])\n",
|
|||
|
"\n",
|
|||
|
"# Loading the test set\n",
|
|||
|
"test_set = CIFAR10(root=DATASET_PATH, train=False, transform=transform, download=True)\n",
|
|||
|
"\n",
|
|||
|
"# We define a set of data loaders that we can use for various purposes later.\n",
|
|||
|
"train_loader = data.DataLoader(train_set, batch_size=256, shuffle=True, drop_last=True, pin_memory=True, num_workers=4)\n",
|
|||
|
"val_loader = data.DataLoader(val_set, batch_size=256, shuffle=False, drop_last=False, num_workers=4)\n",
|
|||
|
"test_loader = data.DataLoader(test_set, batch_size=256, shuffle=False, drop_last=False, num_workers=4)\n",
|
|||
|
"\n",
|
|||
|
"def get_train_images(num):\n",
|
|||
|
" return torch.stack([train_dataset[i][0] for i in range(num)], dim=0)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "4Jl0CTGSkym-"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Building the autoencoder\n",
|
|||
|
"\n",
|
|||
|
"In general, an autoencoder consists of an **encoder** that maps the input $x$ to a lower-dimensional feature vector $z$, and a **decoder** that reconstructs the input $\\hat{x}$ from $z$. We train the model by comparing $x$ to $\\hat{x}$ and optimizing the parameters to increase the similarity between $x$ and $\\hat{x}$. See below for a small illustration of the autoencoder framework.\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"![img](https://raw.githubusercontent.com/hqsiswiliam/COM3025_Torch/main/autoencoder.png)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "_lhJZFR3k1e_"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"\n",
|
|||
|
"For an educational purpose revision in markdown format, the text could be enhanced as follows:\n",
|
|||
|
"\n",
|
|||
|
"To kick off our exploration, we initiate with the construction of the encoder. This component is fundamentally a deep convolutional network tailored for progressively diminishing the image's dimensions. This diminution is achieved through the use of strided convolutions, which methodically reduce the image's size layer by layer. Following the thrice-executed downscaling process, we transition the architecture from convolutional layers to a flattened feature representation. This is achieved by flattening the spatial features into a single vector, which is then processed through several linear layers. As a result, we obtain the latent representation, denoted as\n",
|
|||
|
"$z$, encapsulating the compressed essence of the input image. The size of this latent vector, $d$, is adjustable, providing flexibility in the encoding capacity of our network."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 59,
|
|||
|
"metadata": {
|
|||
|
"id": "i6fToFroJMMT"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class Encoder(nn.Module):\n",
|
|||
|
"\n",
|
|||
|
" def __init__(self,\n",
|
|||
|
" num_input_channels : int,\n",
|
|||
|
" base_channel_size : int,\n",
|
|||
|
" latent_dim : int,\n",
|
|||
|
" act_fn : object = nn.GELU):\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" Inputs:\n",
|
|||
|
" - num_input_channels : Number of input channels of the image. For CIFAR, this parameter is 3\n",
|
|||
|
" - base_channel_size : Number of channels we use in the first convolutional layers. Deeper layers might use a duplicate of it.\n",
|
|||
|
" - latent_dim : Dimensionality of latent representation z\n",
|
|||
|
" - act_fn : Activation function used throughout the encoder network\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" super().__init__()\n",
|
|||
|
" c_hid = base_channel_size\n",
|
|||
|
" self.net = nn.Sequential(\n",
|
|||
|
" nn.Conv2d(num_input_channels, c_hid, kernel_size=3, padding=1, stride=2), # 32x32 => 16x16\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.Conv2d(c_hid, c_hid, kernel_size=3, padding=1),\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.Conv2d(c_hid, 2*c_hid, kernel_size=3, padding=1, stride=2), # 16x16 => 8x8\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.Conv2d(2*c_hid, 2*c_hid, kernel_size=3, padding=1),\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.Conv2d(2*c_hid, 2*c_hid, kernel_size=3, padding=1, stride=2), # 8x8 => 4x4\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.Flatten(), # Image grid to single feature vector\n",
|
|||
|
" nn.Linear(2*16*c_hid, latent_dim)\n",
|
|||
|
" )\n",
|
|||
|
"\n",
|
|||
|
" # self.flatten = nn.Sequential(\n",
|
|||
|
" # nn.Flatten(), # Image grid to single feature vector\n",
|
|||
|
" # nn.Linear(2*16*c_hid, latent_dim)\n",
|
|||
|
" # )\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, x):\n",
|
|||
|
" # x = self.net(x)\n",
|
|||
|
"\n",
|
|||
|
" # print(x.shape)\n",
|
|||
|
" \n",
|
|||
|
" # return self.flatten(x)\n",
|
|||
|
"\n",
|
|||
|
" return self.net(x)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "AOOi0C4wm99b"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Task1\n",
|
|||
|
"Now Complete the decoder implementation"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 133,
|
|||
|
"metadata": {
|
|||
|
"id": "kV2FkEk6JTjk"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class Decoder(nn.Module):\n",
|
|||
|
"\n",
|
|||
|
" def __init__(self,\n",
|
|||
|
" num_input_channels : int,\n",
|
|||
|
" base_channel_size : int,\n",
|
|||
|
" latent_dim : int,\n",
|
|||
|
" act_fn : object = nn.GELU):\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" Inputs:\n",
|
|||
|
" - num_input_channels : Number of channels of the image to reconstruct. For CIFAR, this parameter is 3\n",
|
|||
|
" - base_channel_size : Number of channels we use in the last convolutional layers. Early layers might use a duplicate of it.\n",
|
|||
|
" - latent_dim : Dimensionality of latent representation z\n",
|
|||
|
" - act_fn : Activation function used throughout the decoder network\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" super().__init__()\n",
|
|||
|
" c_hid = base_channel_size\n",
|
|||
|
" self.net = nn.Sequential(\n",
|
|||
|
" nn.Linear(latent_dim, 2*16*c_hid),\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.Unflatten(1, (2*c_hid, 4, 4)),\n",
|
|||
|
" nn.ConvTranspose2d(2*c_hid, 2*c_hid, kernel_size=3, padding=1, stride=2, output_padding=1), # 8x8 <= 4x4\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.Conv2d(2*c_hid, 2*c_hid, kernel_size=3, padding=1),\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.ConvTranspose2d(2*c_hid, c_hid, kernel_size=3, padding=1, stride=2, output_padding=1), # 16x16 <= 8x8\n",
|
|||
|
" act_fn(),\n",
|
|||
|
" nn.Conv2d(c_hid, c_hid, kernel_size=3, padding=1),\n",
|
|||
|
" act_fn(), \n",
|
|||
|
" nn.ConvTranspose2d(c_hid, num_input_channels, kernel_size=3, padding=1, stride=2, output_padding=1), # 32x32 <= 16x16\n",
|
|||
|
" nn.Tanh(),\n",
|
|||
|
" # nn.Sigmoid(),\n",
|
|||
|
" )\n",
|
|||
|
" # You code goes here.\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, x):\n",
|
|||
|
" return self.net(x)\n",
|
|||
|
" # You code goes here."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "-DYpDGTznGVL"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Combining Encoder and Decoder\n",
|
|||
|
"## Loss Function: Mean Squared Error (MSE)\n",
|
|||
|
"\n",
|
|||
|
"For our loss function, we opt for the Mean Squared Error (MSE). MSE is particularly effective in emphasizing the significance of accurately predicting pixel values that are substantially misestimated by the network. For instance, a minor deviation, such as predicting 127 instead of 128, is deemed less critical. However, larger discrepancies, like confusing a pixel value of 0 with 128, are considered more severe and detrimental to the reconstruction quality.\n",
|
|||
|
"\n",
|
|||
|
"Unlike Variational Autoencoders (VAEs) that predict the probability for each pixel value, we employ MSE as a straightforward distance measure. This approach significantly reduces the number of parameters, streamlining the training process. To enhance our understanding of the per-pixel performance, we calculate the summed squared error, averaged across the batch dimension. It's important to note that alternative aggregations (mean or sum) yield equivalent outcomes in terms of resulting parameters.\n",
|
|||
|
"\n",
|
|||
|
"### Limitations of MSE\n",
|
|||
|
"\n",
|
|||
|
"Despite its advantages, MSE is not without drawbacks. Primarily, it tends to produce blurrier images, as it inherently removes small noise and high-frequency patterns, which contribute minimally to the overall error. To mitigate this and achieve more realistic reconstructions, integrating Generative Adversarial Networks (GANs) with autoencoders has proven effective. This hybrid approach is explored in various studies ([example 1](https://arxiv.org/abs/1704.02304), [example 2](https://arxiv.org/abs/1511.05644), and [slides](http://elarosca.net/slides/iccv_autoencoder_gans.pdf)).\n",
|
|||
|
"\n",
|
|||
|
"Furthermore, MSE may not always accurately reflect visual similarity between images. A case in point is when an autoencoder produces an image that is slightly shifted—despite the near-identical appearance, the MSE can significantly increase, showcasing a limitation in capturing true visual fidelity. A potential solution involves leveraging a pre-trained CNN to measure distance based on visual features extracted from lower layers, offering a more nuanced comparison than pixel-level MSE.\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 134,
|
|||
|
"metadata": {
|
|||
|
"id": "hd0hdMVuJxhZ"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class Autoencoder(nn.Module):\n",
|
|||
|
"\n",
|
|||
|
" def __init__(self,\n",
|
|||
|
" base_channel_size: int,\n",
|
|||
|
" latent_dim: int,\n",
|
|||
|
" encoder_class : object = Encoder,\n",
|
|||
|
" decoder_class : object = Decoder,\n",
|
|||
|
" num_input_channels: int = 3,\n",
|
|||
|
" width: int = 32,\n",
|
|||
|
" height: int = 32):\n",
|
|||
|
" super().__init__()\n",
|
|||
|
" # Creating encoder and decoder\n",
|
|||
|
" self.encoder = encoder_class(num_input_channels, base_channel_size, latent_dim)\n",
|
|||
|
" self.decoder = decoder_class(num_input_channels, base_channel_size, latent_dim)\n",
|
|||
|
" # Example input array needed for visualizing the graph of the network\n",
|
|||
|
" self.example_input_array = torch.zeros(2, num_input_channels, width, height)\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, x):\n",
|
|||
|
" z = self.encoder(x)\n",
|
|||
|
" x_hat = self.decoder(z)\n",
|
|||
|
" return x_hat\n",
|
|||
|
"\n",
|
|||
|
" def _get_reconstruction_loss(self, batch):\n",
|
|||
|
" x = batch # We do not need the labels\n",
|
|||
|
" x_hat = self.forward(x)\n",
|
|||
|
" loss = F.mse_loss(x, x_hat, reduction=\"none\")\n",
|
|||
|
" loss = loss.sum(dim=[1,2,3]).mean(dim=[0])\n",
|
|||
|
" return loss\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "AOHmolo8nkBM"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Utility code for comparing Images"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 779
|
|||
|
},
|
|||
|
"id": "_ttCZos4JWpr",
|
|||
|
"outputId": "aaae7d91-f4ca-4f36-a495-8e4380992e2e"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMjMwIDE0MC40MDUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicZY9Lb8IwEITv+yvmCAfsXeeB4cajjVr1QrHEoeopJIEIitIg+PvdRK0A1dJoPSvP5127LC77vHjP5lisyd5c3pKgVlVg1KorBJmqIlZ3JBd19dBXidnEnKi7v++ISmowNq6Xk8SkEGHjPb4LbPAFO1Ngq9RadVVehscZGo2l6H76Df7R8iPsi2B5wopWaPRB9YBRT42OzxhpFvHEeMeRuATiYsNeATQPZJ9FGwhlv1XY0gcG692+HEJSM3Fj9lF3MDgXW4zw9q9/atspHCe68xCfCK/0FEhHoh9kx0utCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMjI0CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggNjEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzU1VzBQsLQAEqamRgrmRpYKKYZcQD6IlctlaGkOZuWAWRbGQAZIGZxhAKTBmnNgenK4MrjSAMsVEMwKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDM0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjvSm0EI679T6AKeWd7LeZzJpPhz/zYCOxUssEIC0gIHmXiJIapRrvglTzBeJ/B3vTyNn8e7kFrwVKQfuDZt4/1YsyYKlkYshdnHvh8l5Hhq/BsCPRdpwoxMRg4kA3G/1ufPepMph9+ANG1OHyVJD6IFu1vDji8LMkh6UsOSnfywrgVWF6EJc2NNJCOnVqbm+dgzXMYTYySomgUk6RP3qYIRacZj56wlDzIcT/Xixa+38VrmMfWyqkDGNsEcbCcz4RRFBOIXlCQ3cRdNHcXRzFhzu9BQUuS+u4eTk173l5OowCshnMVawjFDT1nmZKdBCVStnAAzrNe+ME7TRgl3arq9K/b188wkjNscdlZKpsE5Du5lkzmCZK87JmzC4xDz3j2CkZg3v4stgiuXOddk+rEfRRvpg+L6nKspsxUl/EOVPLHiGv+f3/v58/z+B4wofiMKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDczIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2NlcwUDA0BJFGRgYKpkBWiiEXSMDQyEQhlwskCGLlgFkGQBqiOAeuJocrA8wGaYWoB7Eg6o0tjaEqESyIbAZXGgCnyBevCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDEzNiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCA1NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNjNUMFAwsVQwMjZRMDY0AmIThRRDLqAIiJXLBRPLAbNAqnK4oMpzYKpyuDK40gAFGA4yCmVuZHN0cmVhbQplbmRvYmoKM
|
|||
|
"image/svg+xml": [
|
|||
|
"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n",
|
|||
|
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
|
|||
|
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
|
|||
|
"<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"230pt\" height=\"140.398125pt\" viewBox=\"0 0 230 140.398125\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n",
|
|||
|
" <metadata>\n",
|
|||
|
" <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n",
|
|||
|
" <cc:Work>\n",
|
|||
|
" <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
|
|||
|
" <dc:date>2024-02-20T13:49:03.109846</dc:date>\n",
|
|||
|
" <dc:format>image/svg+xml</dc:format>\n",
|
|||
|
" <dc:creator>\n",
|
|||
|
" <cc:Agent>\n",
|
|||
|
" <dc:title>Matplotlib v3.8.2, https://matplotlib.org/</dc:title>\n",
|
|||
|
" </cc:Agent>\n",
|
|||
|
" </dc:creator>\n",
|
|||
|
" </cc:Work>\n",
|
|||
|
" </rdf:RDF>\n",
|
|||
|
" </metadata>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <g id=\"figure_1\">\n",
|
|||
|
" <g id=\"patch_1\">\n",
|
|||
|
" <path d=\"M 0 140.398125 \n",
|
|||
|
"L 230 140.398125 \n",
|
|||
|
"L 230 0 \n",
|
|||
|
"L 0 0 \n",
|
|||
|
"z\n",
|
|||
|
"\" style=\"fill: #ffffff\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_1\">\n",
|
|||
|
" <g clip-path=\"url(#pca498c625e)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAASwAAACaCAYAAAATmXWpAAAVQUlEQVR4nO2dy48c13XGTz26+j3TnAeHw4dIig/ZEiVLjiMYdiA4CBIY2WSRXRZZZBNkn38hywD5D7JIFvEiQBwggLOIZUBOJFmRTTKOKPEtkUNyXj09Pf2od2U73zkNT3NAwLni99ud7q5bt+49dbrw1bn3eCJSCSGEOID/2+4AIYTMCwMWIcQZGLAIIc7AgEUIcQYGLEKIMzBgEUKcgQGLEOIMDFiEEGcI5/nRj//ur8Ge7m+B3e4mYDfrO6aNhWUP7N5qA3/g5+aY8aQEe9Bvor0TYL/G9nKKPMIPKozRZY7nEBGJpzHYUYRtBCGe9yC2bUxH2EajSsHu+vi9iMjeZB/shxleT93DHN92TY2hiEymOBePdw7wmHbbHPMH770N9lvXLoP9/k8/wjafjEwbf/OPPzGfHeZv/+oH5rPXXr0AdjL4GOzuKp6n0cxMG2ENfSKIcH5HY+tXgwHae7uRsvH7oLRjFkgd7DxT50F3FxGRsqzUT7CvQVjDNkP7PFGpNO9aiecNCpxvEZHxdAJ2P8fzZPEU7FazZdroD/E3N+7gID17gucQEfmLP/su2L/77lWwf/SjD8D++w8emDY0fMIihDgDAxYhxBkYsAghzjCXhhVkqEnV0k/ArvuoNUSh1RryCWoNe09fLq0hU1rD/gytYaq0hprSGhKlNQQztIaB0hruzaE1nO2hvdDA3/ziw0/BVqc4NmfPo50soK5XNHDMktyO81jJadqPRkM7Rvqz0agAO4vRbkZWK6zVcG6CQPnMDJ+IY9QxK+VnhfLNdt3enqFqtyywH7X6SXteD30g6Ctds4PjsbC0bNronsS+DH08Jk4emWOiNmq9z/afgf3ZlxvmmKPgExYhxBkYsAghzsCARQhxhrk0LGoN1BoOUwRd08Zx6HRQ60x20ElGBziGw6kd58Eu+uJwT/2mQO1URKTdOAX2Ygvz6MbBHtgHEyWWikhRYbud1iLYSWVz81L1UZag/3pK+PRK20angz4eKj01naLviogMB6hJRk1so9tbADuooT+IiHRqqAVfuYC+d2pJ5TuKyDvffg3sg/EYf1A+//MSn7AIIc7AgEUIcQYGLEKIM8ylYVFroNZwmJ2R+v6Y5DFqgfEQx6Q/xOvbG9s8u51NnIssxcS6TmfGOk/ZBLtUaYNlgcekE5sjWGtiX4sC5y7wcb5FRCI1X3mKfqWrwXgzNNmggZpkluPa0WmKtohIu4vHdDo4jp6P8+t5M5ITC7zeluCg9Vbs3Jzo4D2+srQE9h/+/jfA/vgfrtvzKviERQhxBgYsQogzMGARQpyBAYsQ4gxzie4URymOHuaTmzgvIiIP+09tX45guId9SxO8/r0tHOnNbVukPC3wJYN92WFdPIpwfvWmf1mCPlE27fzGGW622GipFyQdHEMRkc0tfCmU1NCvykrdEwt2rip1EwyH2I+wZp9BVpZPgB0FeP2J8m8J7T0xToZ4TIz3UTa253149yHY176DG0O+994beABFd0LI1wkGLEKIMzBgEUKcYS4Ni1oDtQZoM7Hz++83nl/D+uoR6m2PP8fk4mmB49Fo2kXXdR/HRLtRu9Uzx7SamDysF8Qv9dAn+n1bdGMQ48L0869dAvvxY1xALiKyeOoc2Ot1nL/d7W08Rx9tEZEsxTHyVe5wMrYJyaMR+kSj2UO7i+OR57aNoo56caG00andj1LuPsJF80tncT7XT5+xBx0Bn7AIIc7AgEUIcQYGLEKIM8ylYVFroNZwmOXV+7aRY7C5rRazx7hQO2igNjirCGxQC5WNPhIGVm+r1Jg02+hHURP1VokGpo3vfPt7YJ88h37VPW2LCWeqUO5o+wnYW88egz2d2kXmi4sdZaNPFIX1idv3HoL9y1u3wfbrOK4Lp6wWfPEaLrzX+0/GfVsYeGsPr/dXt2+C/a1orvAD8AmLEOIMDFiEEGdgwCKEOAMDFiHEGeZSvSiOUhw9zNK6TbY9DmmOfhXVcT4rD8fIL6y7tlp4vZMCry/NbKXrMMb5qof4RmRTVdjuLq3a80b4Imb70V38vml30P2vT/4T+zpQFdUjTEhud5R/i0irhe1WavfbasYzyPqZ02DHPrYx2MNNA6YH1p+3ld+cWVf9WLfH7NUGYI9j9LPlgR3Xo+ATFiHEGRiwCCHOwIBFCHGGuTQsag3UGg5z+fUrpo3jUFa4iWGc4Hw2mqjZTaZWfxunuJlgdxVFu90dmynbiHBMTi2uYb8E/azVsppsMuzjMQVeyxd3bEKyn+P1RR7eV7oaU0dV+haxCchpgTpvltuNMPXGAlfP4nyWp9Gfh6lNwE5D7Hs8QDtrWk22ozaGrKkNJ8cHtsrVUfAJixDiDAxYhBBnYMAihDjDXBoWtQZqDYdpXsKiFMfF93Ec01xtUJjj/2mhvxeRTFCTW1Sa5cqZV80xS2sXwe6u42L3VOXh9bcemDae3f0K7FcuvgL2yZNWTx1sqqIqJWqSzRC1UC+0RUbGakPGSt0DaWWP8QTHpNPUi+in6nvb90I59MaTe/iDNi6YFxHp1tGvGiXak50ZRVSOgE9YhBBnYMAihDgDAxYhxBnm0rCoNVBrOMzO1vPnz8wG/cYPI7BLpaV5Kg9PRKTuYRsH+6hZ/smf/6U5Zv3yO2Dff4A65p4as8HG56aN0Rh9Ly/R58exqvorIs+2MJ9vuYeaa6Gud211xbSRbmKxj92hykVcRp1XROTClTfBPnfxbbBHI9SPG6Fd13vz05+DffsW3s/NGQVgyjp+Fqv7ZnuCG1bOA5+wCCHOwIBFCHEGBixCiDMwYBFCnGHOshUURw/zsoujZfBiqub4XqQ+QL+pQvSZmm/dtSrwhUiWYNLy9U8/Nccsnb8G9utvo59tLuB47NyxbQQncBPLc5dfB/vJwYwXTwG2M1Ivq+IxJgL7DXu9S8v4omV/in7W6uLGkSIi59SLpqtvYiVvUVXZ+49umTY+S7bAXg7RJ7zUbl4Q72Ny9Ei9aKqarJpDCPkaw4BFCHEGBixCiDPMlzhKrQHsl11rCP0XU4SirvS0SYI+Uii9sdlSfigigfLFfIR+9a//9GNzTKN5Fuzv//CPwV5+BQuVFKWd314bk3pXL7wGdiu0Y5QIzl+iipcMhwOwdzYw6VlEZKAqhq+vY8L1mfNYpVtEZKGDWufjr9C/T62hdrrQm7EhZQN95ITyiXJGsnhLyaWLAd5HrWWrpx4Fn7AIIc7AgEUIcQYGLEKIM8ylYVFroNZwmLY97bHIlK55oosbIUbtLtiN0PrVwRA3ZLy3ixrdYs9u6njvlz8B+/wZvN6r7/0Q7FrXtjF5/CXY27evgx2tom+KiLxxFYt3BGoh+jTF+d988si0sbeJRXwLVbwl6lpd6OZtLLzSVPtNLq/gpgJxirmLIiJ5AzfTbCn/TSvMMxQRqXl4PVEdF/fP2iThKPiERQhxBgYsQogzMGARQpxhLg2LWgO1hsNsPrEFQ46Dr9acNus4v16JYxbkNoesKFGzu/t0D+yVZbvOM7yHmuONn78PdncNC9qev4S5eyIiH3yIazZXF/4H7MYpu8lh7/xbYK8t43x2llFPXZyxRjWbKt1WFYS5e9eup925j371ve++C/byGra5WdoiMl5TFU9O8Z4IfMx3FBEpUrznp6qv+9sDc8xR8AmLEOIMDFiEEGdgwCKEOAMDFiHEGeZb/ExxFOyXXRxNDlCUPy66cFBQw3YrwR/kgi9/RES8Jh5Tqr/g/sD6YjhFf/7lR1+Avbz+EdhX3/y+aSMJe2Dff4yLzq+tYdKziMizrW2wz7ylqhX18GVVS1VcFxGZ9HEMpgkuxL90xiZCryz+Hti91SvqF/jSbKF7UjTqnZHsPMRkas/Hlz0iImWGL2u8Cse9VvTUEfbllYZPWIQQZ2DAIoQ4AwMWIcQZ5tKwqDVQazhMED3/xmuzKFQNjbCJ11dWykkKu1g2yHCcl5S81mzZCtu9Ds7fXh83Ofzk/Z+C3YpsUZVvvXsZ7M9vfIhdjew4n3kVNcgsGeAxT56AnSbohyIiQYV
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"text_1\">\n",
|
|||
|
" <!-- Shifted - Loss: 205.40 -->\n",
|
|||
|
" <g transform=\"translate(49.799688 16.318125) scale(0.12 -0.12)\">\n",
|
|||
|
" <defs>\n",
|
|||
|
" <path id=\"DejaVuSans-53\" d=\"M 3425 4513 \n",
|
|||
|
"L 3425 3897 \n",
|
|||
|
"Q 3066 4069 2747 4153 \n",
|
|||
|
"Q 2428 4238 2131 4238 \n",
|
|||
|
"Q 1616 4238 1336 4038 \n",
|
|||
|
"Q 1056 3838 1056 3469 \n",
|
|||
|
"Q 1056 3159 1242 3001 \n",
|
|||
|
"Q 1428 2844 1947 2747 \n",
|
|||
|
"L 2328 2669 \n",
|
|||
|
"Q 3034 2534 3370 2195 \n",
|
|||
|
"Q 3706 1856 3706 1288 \n",
|
|||
|
"Q 3706 609 3251 259 \n",
|
|||
|
"Q 2797 -91 1919 -91 \n",
|
|||
|
"Q 1588 -91 1214 -16 \n",
|
|||
|
"Q 841 59 441 206 \n",
|
|||
|
"L 441 856 \n",
|
|||
|
"Q 825 641 1194 531 \n",
|
|||
|
"Q 1563 422 1919 422 \n",
|
|||
|
"Q 2459 422 2753 634 \n",
|
|||
|
"Q 3047 847 3047 1241 \n",
|
|||
|
"Q 3047 1584 2836 1778 \n",
|
|||
|
"Q 2625 1972 2144 2069 \n",
|
|||
|
"L 1759 2144 \n",
|
|||
|
"Q 1053 2284 737 2584 \n",
|
|||
|
"Q 422 2884 422 3419 \n",
|
|||
|
"Q 422 4038 858 4394 \n",
|
|||
|
"Q 1294 4750 2059 4750 \n",
|
|||
|
"Q 2388 4750 2728 4690 \n",
|
|||
|
"Q 3069 4631 3425 4513 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n",
|
|||
|
"L 3513 0 \n",
|
|||
|
"L 2938 0 \n",
|
|||
|
"L 2938 2094 \n",
|
|||
|
"Q 2938 2591 2744 2837 \n",
|
|||
|
"Q 2550 3084 2163 3084 \n",
|
|||
|
"Q 1697 3084 1428 2787 \n",
|
|||
|
"Q 1159 2491 1159 1978 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 4863 \n",
|
|||
|
"L 1159 4863 \n",
|
|||
|
"L 1159 2956 \n",
|
|||
|
"Q 1366 3272 1645 3428 \n",
|
|||
|
"Q 1925 3584 2291 3584 \n",
|
|||
|
"Q 2894 3584 3203 3211 \n",
|
|||
|
"Q 3513 2838 3513 2113 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n",
|
|||
|
"L 1178 3500 \n",
|
|||
|
"L 1178 0 \n",
|
|||
|
"L 603 0 \n",
|
|||
|
"L 603 3500 \n",
|
|||
|
"z\n",
|
|||
|
"M 603 4863 \n",
|
|||
|
"L 1178 4863 \n",
|
|||
|
"L 1178 4134 \n",
|
|||
|
"L 603 4134 \n",
|
|||
|
"L 603 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-66\" d=\"M 2375 4863 \n",
|
|||
|
"L 2375 4384 \n",
|
|||
|
"L 1825 4384 \n",
|
|||
|
"Q 1516 4384 1395 4259 \n",
|
|||
|
"Q 1275 4134 1275 3809 \n",
|
|||
|
"L 1275 3500 \n",
|
|||
|
"L 2222 3500 \n",
|
|||
|
"L 2222 3053 \n",
|
|||
|
"L 1275 3053 \n",
|
|||
|
"L 1275 0 \n",
|
|||
|
"L 697 0 \n",
|
|||
|
"L 697 3053 \n",
|
|||
|
"L 147 3053 \n",
|
|||
|
"L 147 3500 \n",
|
|||
|
"L 697 3500 \n",
|
|||
|
"L 697 3744 \n",
|
|||
|
"Q 697 4328 969 4595 \n",
|
|||
|
"Q 1241 4863 1831 4863 \n",
|
|||
|
"L 2375 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n",
|
|||
|
"L 1172 3500 \n",
|
|||
|
"L 2356 3500 \n",
|
|||
|
"L 2356 3053 \n",
|
|||
|
"L 1172 3053 \n",
|
|||
|
"L 1172 1153 \n",
|
|||
|
"Q 1172 725 1289 603 \n",
|
|||
|
"Q 1406 481 1766 481 \n",
|
|||
|
"L 2356 481 \n",
|
|||
|
"L 2356 0 \n",
|
|||
|
"L 1766 0 \n",
|
|||
|
"Q 1100 0 847 248 \n",
|
|||
|
"Q 594 497 594 1153 \n",
|
|||
|
"L 594 3053 \n",
|
|||
|
"L 172 3053 \n",
|
|||
|
"L 172 3500 \n",
|
|||
|
"L 594 3500 \n",
|
|||
|
"L 594 4494 \n",
|
|||
|
"L 1172 4494 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n",
|
|||
|
"L 3597 1613 \n",
|
|||
|
"L 953 1613 \n",
|
|||
|
"Q 991 1019 1311 708 \n",
|
|||
|
"Q 1631 397 2203 397 \n",
|
|||
|
"Q 2534 397 2845 478 \n",
|
|||
|
"Q 3156 559 3463 722 \n",
|
|||
|
"L 3463 178 \n",
|
|||
|
"Q 3153 47 2828 -22 \n",
|
|||
|
"Q 2503 -91 2169 -91 \n",
|
|||
|
"Q 1331 -91 842 396 \n",
|
|||
|
"Q 353 884 353 1716 \n",
|
|||
|
"Q 353 2575 817 3079 \n",
|
|||
|
"Q 1281 3584 2069 3584 \n",
|
|||
|
"Q 2775 3584 3186 3129 \n",
|
|||
|
"Q 3597 2675 3597 1894 \n",
|
|||
|
"z\n",
|
|||
|
"M 3022 2063 \n",
|
|||
|
"Q 3016 2534 2758 2815 \n",
|
|||
|
"Q 2500 3097 2075 3097 \n",
|
|||
|
"Q 1594 3097 1305 2825 \n",
|
|||
|
"Q 1016 2553 972 2059 \n",
|
|||
|
"L 3022 2063 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n",
|
|||
|
"L 2906 4863 \n",
|
|||
|
"L 3481 4863 \n",
|
|||
|
"L 3481 0 \n",
|
|||
|
"L 2906 0 \n",
|
|||
|
"L 2906 525 \n",
|
|||
|
"Q 2725 213 2448 61 \n",
|
|||
|
"Q 2172 -91 1784 -91 \n",
|
|||
|
"Q 1150 -91 751 415 \n",
|
|||
|
"Q 353 922 353 1747 \n",
|
|||
|
"Q 353 2572 751 3078 \n",
|
|||
|
"Q 1150 3584 1784 3584 \n",
|
|||
|
"Q 2172 3584 2448 3432 \n",
|
|||
|
"Q 2725 3281 2906 2969 \n",
|
|||
|
"z\n",
|
|||
|
"M 947 1747 \n",
|
|||
|
"Q 947 1113 1208 752 \n",
|
|||
|
"Q 1469 391 1925 391 \n",
|
|||
|
"Q 2381 391 2643 752 \n",
|
|||
|
"Q 2906 1113 2906 1747 \n",
|
|||
|
"Q 2906 2381 2643 2742 \n",
|
|||
|
"Q 2381 3103 1925 3103 \n",
|
|||
|
"Q 1469 3103 1208 2742 \n",
|
|||
|
"Q 947 2381 947 1747 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-2d\" d=\"M 313 2009 \n",
|
|||
|
"L 1997 2009 \n",
|
|||
|
"L 1997 1497 \n",
|
|||
|
"L 313 1497 \n",
|
|||
|
"L 313 2009 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n",
|
|||
|
"L 1259 4666 \n",
|
|||
|
"L 1259 531 \n",
|
|||
|
"L 3531 531 \n",
|
|||
|
"L 3531 0 \n",
|
|||
|
"L 628 0 \n",
|
|||
|
"L 628 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n",
|
|||
|
"Q 1497 3097 1228 2736 \n",
|
|||
|
"Q 959 2375 959 1747 \n",
|
|||
|
"Q 959 1119 1226 758 \n",
|
|||
|
"Q 1494 397 1959 397 \n",
|
|||
|
"Q 2419 397 2687 759 \n",
|
|||
|
"Q 2956 1122 2956 1747 \n",
|
|||
|
"Q 2956 2369 2687 2733 \n",
|
|||
|
"Q 2419 3097 1959 3097 \n",
|
|||
|
"z\n",
|
|||
|
"M 1959 3584 \n",
|
|||
|
"Q 2709 3584 3137 3096 \n",
|
|||
|
"Q 3566 2609 3566 1747 \n",
|
|||
|
"Q 3566 888 3137 398 \n",
|
|||
|
"Q 2709 -91 1959 -91 \n",
|
|||
|
"Q 1206 -91 779 398 \n",
|
|||
|
"Q 353 888 353 1747 \n",
|
|||
|
"Q 353 2609 779 3096 \n",
|
|||
|
"Q 1206 3584 1959 3584 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n",
|
|||
|
"L 2834 2853 \n",
|
|||
|
"Q 2591 2978 2328 3040 \n",
|
|||
|
"Q 2066 3103 1784 3103 \n",
|
|||
|
"Q 1356 3103 1142 2972 \n",
|
|||
|
"Q 928 2841 928 2578 \n",
|
|||
|
"Q 928 2378 1081 2264 \n",
|
|||
|
"Q 1234 2150 1697 2047 \n",
|
|||
|
"L 1894 2003 \n",
|
|||
|
"Q 2506 1872 2764 1633 \n",
|
|||
|
"Q 3022 1394 3022 966 \n",
|
|||
|
"Q 3022 478 2636 193 \n",
|
|||
|
"Q 2250 -91 1575 -91 \n",
|
|||
|
"Q 1294 -91 989 -36 \n",
|
|||
|
"Q 684 19 347 128 \n",
|
|||
|
"L 347 722 \n",
|
|||
|
"Q 666 556 975 473 \n",
|
|||
|
"Q 1284 391 1588 391 \n",
|
|||
|
"Q 1994 391 2212 530 \n",
|
|||
|
"Q 2431 669 2431 922 \n",
|
|||
|
"Q 2431 1156 2273 1281 \n",
|
|||
|
"Q 2116 1406 1581 1522 \n",
|
|||
|
"L 1381 1569 \n",
|
|||
|
"Q 847 1681 609 1914 \n",
|
|||
|
"Q 372 2147 372 2553 \n",
|
|||
|
"Q 372 3047 722 3315 \n",
|
|||
|
"Q 1072 3584 1716 3584 \n",
|
|||
|
"Q 2034 3584 2315 3537 \n",
|
|||
|
"Q 2597 3491 2834 3397 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-3a\" d=\"M 750 794 \n",
|
|||
|
"L 1409 794 \n",
|
|||
|
"L 1409 0 \n",
|
|||
|
"L 750 0 \n",
|
|||
|
"L 750 794 \n",
|
|||
|
"z\n",
|
|||
|
"M 750 3309 \n",
|
|||
|
"L 1409 3309 \n",
|
|||
|
"L 1409 2516 \n",
|
|||
|
"L 750 2516 \n",
|
|||
|
"L 750 3309 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n",
|
|||
|
"L 3431 531 \n",
|
|||
|
"L 3431 0 \n",
|
|||
|
"L 469 0 \n",
|
|||
|
"L 469 531 \n",
|
|||
|
"Q 828 903 1448 1529 \n",
|
|||
|
"Q 2069 2156 2228 2338 \n",
|
|||
|
"Q 2531 2678 2651 2914 \n",
|
|||
|
"Q 2772 3150 2772 3378 \n",
|
|||
|
"Q 2772 3750 2511 3984 \n",
|
|||
|
"Q 2250 4219 1831 4219 \n",
|
|||
|
"Q 1534 4219 1204 4116 \n",
|
|||
|
"Q 875 4013 500 3803 \n",
|
|||
|
"L 500 4441 \n",
|
|||
|
"Q 881 4594 1212 4672 \n",
|
|||
|
"Q 1544 4750 1819 4750 \n",
|
|||
|
"Q 2544 4750 2975 4387 \n",
|
|||
|
"Q 3406 4025 3406 3419 \n",
|
|||
|
"Q 3406 3131 3298 2873 \n",
|
|||
|
"Q 3191 2616 2906 2266 \n",
|
|||
|
"Q 2828 2175 2409 1742 \n",
|
|||
|
"Q 1991 1309 1228 531 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n",
|
|||
|
"Q 1547 4250 1301 3770 \n",
|
|||
|
"Q 1056 3291 1056 2328 \n",
|
|||
|
"Q 1056 1369 1301 889 \n",
|
|||
|
"Q 1547 409 2034 409 \n",
|
|||
|
"Q 2525 409 2770 889 \n",
|
|||
|
"Q 3016 1369 3016 2328 \n",
|
|||
|
"Q 3016 3291 2770 3770 \n",
|
|||
|
"Q 2525 4250 2034 4250 \n",
|
|||
|
"z\n",
|
|||
|
"M 2034 4750 \n",
|
|||
|
"Q 2819 4750 3233 4129 \n",
|
|||
|
"Q 3647 3509 3647 2328 \n",
|
|||
|
"Q 3647 1150 3233 529 \n",
|
|||
|
"Q 2819 -91 2034 -91 \n",
|
|||
|
"Q 1250 -91 836 529 \n",
|
|||
|
"Q 422 1150 422 2328 \n",
|
|||
|
"Q 422 3509 836 4129 \n",
|
|||
|
"Q 1250 4750 2034 4750 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n",
|
|||
|
"L 3169 4666 \n",
|
|||
|
"L 3169 4134 \n",
|
|||
|
"L 1269 4134 \n",
|
|||
|
"L 1269 2991 \n",
|
|||
|
"Q 1406 3038 1543 3061 \n",
|
|||
|
"Q 1681 3084 1819 3084 \n",
|
|||
|
"Q 2600 3084 3056 2656 \n",
|
|||
|
"Q 3513 2228 3513 1497 \n",
|
|||
|
"Q 3513 744 3044 326 \n",
|
|||
|
"Q 2575 -91 1722 -91 \n",
|
|||
|
"Q 1428 -91 1123 -41 \n",
|
|||
|
"Q 819 9 494 109 \n",
|
|||
|
"L 494 744 \n",
|
|||
|
"Q 775 591 1075 516 \n",
|
|||
|
"Q 1375 441 1709 441 \n",
|
|||
|
"Q 2250 441 2565 725 \n",
|
|||
|
"Q 2881 1009 2881 1497 \n",
|
|||
|
"Q 2881 1984 2565 2268 \n",
|
|||
|
"Q 2250 2553 1709 2553 \n",
|
|||
|
"Q 1456 2553 1204 2497 \n",
|
|||
|
"Q 953 2441 691 2322 \n",
|
|||
|
"L 691 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n",
|
|||
|
"L 1344 794 \n",
|
|||
|
"L 1344 0 \n",
|
|||
|
"L 684 0 \n",
|
|||
|
"L 684 794 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n",
|
|||
|
"L 825 1625 \n",
|
|||
|
"L 2419 1625 \n",
|
|||
|
"L 2419 4116 \n",
|
|||
|
"z\n",
|
|||
|
"M 2253 4666 \n",
|
|||
|
"L 3047 4666 \n",
|
|||
|
"L 3047 1625 \n",
|
|||
|
"L 3713 1625 \n",
|
|||
|
"L 3713 1100 \n",
|
|||
|
"L 3047 1100 \n",
|
|||
|
"L 3047 0 \n",
|
|||
|
"L 2419 0 \n",
|
|||
|
"L 2419 1100 \n",
|
|||
|
"L 313 1100 \n",
|
|||
|
"L 313 1709 \n",
|
|||
|
"L 2253 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-53\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-68\" x=\"63.476562\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-69\" x=\"126.855469\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-66\" x=\"154.638672\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-74\" x=\"188.09375\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-65\" x=\"227.302734\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-64\" x=\"288.826172\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"352.302734\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-2d\" x=\"384.089844\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"420.173828\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-4c\" x=\"451.960938\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"505.923828\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"567.105469\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"619.205078\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-3a\" x=\"671.304688\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"704.996094\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-32\" x=\"736.783203\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-30\" x=\"800.40625\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-35\" x=\"864.029297\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-2e\" x=\"927.652344\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-34\" x=\"959.439453\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-30\" x=\"1023.0625\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <clipPath id=\"pca498c625e\">\n",
|
|||
|
" <rect x=\"7.2\" y=\"22.318125\" width=\"215.6\" height=\"110.88\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" </defs>\n",
|
|||
|
"</svg>\n"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 400x200 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMjMwIDE0MC40MDUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicVY/BTsMwEETv+xVzTA61vY7tGm6UQgSCQ8ESB9RDlaaBQKmCJfr7bCIQ1NJod6yd57Vetl+vTftQL3D5SPrPNZkYvaiDQS86glGLOjLi9mSrsb5PlZ1Rznhx//sXoh0NmCs7ybJXAcxGxYjPFk/4gL4QYBZqLzoKr8bpDoPEAsaXfoK/tGYPfcNYHrCiFQYZ6E4w4mmQ9Q1mkoWLioMzwXqwdcpEAdAikb5muUDaTb9KW3pGcb/JbyUqr9iP80W7xQx3JTioMzs3sRoPikPO52AflYsl1ki3dJVIlqFvm2xKRwplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjIyOAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDYxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCA5MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jssNwDAIQ+9MwQjhUwL7VFUPyf7Xhnx6wQ9byLgJFgwfo9qFlQNvgrEndWBdXgMVQhYZZOTbOxeLSmYWv5omqRPSJHHeRKE7TUqdD7TT2+CF5wP16R3sCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDczIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2NlcwUDA0BJFGRgYKpkBWiiEXSMDQyEQhlwskCGLlgFkGQBqiOAeuJocrA8wGaYWoB7Eg6o0tjaEqESyIbAZXGgCnyBevCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoe
|
|||
|
"image/svg+xml": [
|
|||
|
"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n",
|
|||
|
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
|
|||
|
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
|
|||
|
"<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"230pt\" height=\"140.398125pt\" viewBox=\"0 0 230 140.398125\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n",
|
|||
|
" <metadata>\n",
|
|||
|
" <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n",
|
|||
|
" <cc:Work>\n",
|
|||
|
" <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
|
|||
|
" <dc:date>2024-02-20T13:49:03.134798</dc:date>\n",
|
|||
|
" <dc:format>image/svg+xml</dc:format>\n",
|
|||
|
" <dc:creator>\n",
|
|||
|
" <cc:Agent>\n",
|
|||
|
" <dc:title>Matplotlib v3.8.2, https://matplotlib.org/</dc:title>\n",
|
|||
|
" </cc:Agent>\n",
|
|||
|
" </dc:creator>\n",
|
|||
|
" </cc:Work>\n",
|
|||
|
" </rdf:RDF>\n",
|
|||
|
" </metadata>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <g id=\"figure_1\">\n",
|
|||
|
" <g id=\"patch_1\">\n",
|
|||
|
" <path d=\"M 0 140.398125 \n",
|
|||
|
"L 230 140.398125 \n",
|
|||
|
"L 230 0 \n",
|
|||
|
"L 0 0 \n",
|
|||
|
"z\n",
|
|||
|
"\" style=\"fill: #ffffff\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_1\">\n",
|
|||
|
" <g clip-path=\"url(#p82b6a42c5a)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAASwAAACaCAYAAAATmXWpAAAXe0lEQVR4nO2dy48c53XFT3V1V79nmvMgOaQoSiIl2ZL8jGEEdiDkAQdGgCD/Qbb5B/IvZJ91gOyMwKsgzspZ+AHEiWXLsiXF0YMiRUqcITkP9vT0TL+qu7qz8Mbn3oaqy9CQ+YDz291m19fV1Qd3qg7vd28EYAEhhAiA0tM+ASGEWBUlLCFEMChhCSGCQQlLCBEMSlhCiGBQwhJCBIMSlhAiGJSwhBDBUF7lTT/4x7+neHRyQHGzPaG4Xj1ya6xtRhR3tmv8htLMHTMYzinudescH8V8XgP/dbJZwi8sOEfPZ/wZADAejSlOEl4jLvPnno79GqMzXqO2SClul/jfAeB4eELxvSl/n2rENb7NirmGAIYj/i12j075mGbTHfMXr3+V4i+/dpPin/z4DV7zwZlb4x++90P32u9jNQQU15HVEJCvI6shoLiOnIaAXB1ZDQHFdWQ1BOTryGoIKK4jqyEgX0dWQ0BxHeVpCNAdlhAiIJSwhBDBoIQlhAiGlTyseMpeQiV9k+JqiZ9Fk/LUrTEbsm9w/JBz5dnAe1i9HsfHjxMTm/Oce38mRpXPY2o+x9simM8X5i18rnG5wmuWfd5fmC3l0zl/7knGngAAjEZDiisz/pzJeMTnUW+4NXp9fs+dj/giPXrAnwEAz3Q4Xqvxe37587coNh+xElZDQHEdWQ0B+TqyGgKK68hqCMjXkdXQ795STEdWQ0C+jqyGgOI6shoC8nVkNQScj450hyWECAYlLCFEMChhCSGCYSUP65nrHE/WuPYjq/Fz9WTm8+DAlO5Yr+Gs7/0Y+9rZWUbxdMxxPfF1SZUKP7/HsfGnlvhP4zHXuiyMH5EZ/6JZ9ZexbNadZ3welepF/7kR+wRx19S+tPh6rG1sujXaF/lc+iU+Zjy5745JmlwP9OjkEcXvfbJHcRa33Rp5WA0BxXVkNQTk62iprgrqyGoIyNeR1RBQXEdWQ0C+jqyGgOI6shoC8nVkNQScj450hyWECAYlLCFEMChhCSGCYSUPq9XiepjJEZsJZ6ec9/ojv2zvMfsV/WPznszX2DRrlyleb/Beq0F8TPHp0D+/Zwtet9VYp3iy8HvNUvPSdMIeR2QKZKK5X6PVYh+kbGpu0pH3OPo9rltJ6rxGu7NGcVzxvkGrwjVDLz7H/sTlDb8v7mtff5ni08GA3zDn3/fozPz7ClgNAcV1ZDUE5OvIaggoriOrISBfR1ZDQHEdWQ0B+TqyGgKK68hqCMjXkdUQcD460h2WECIYlLCEEMGghCWECAYlLCFEMKxkus/GXOA27rPR1+2zaXc88JuQj/bZYJymvFu01VrSBA/7FM+NbzvPjNE59BuoK3U+1yxjUzIu+aLAxJiQs5TNUrsnNVpSsBrXuNBuOuOmaKPUN0lrtvmYVouvY1Tivy9RtGTndsbftwG+aJ0t/9tcaLEMtjY2KP7On32B4jff5d8FAO51H/pz+T2shoDiOrIaAvJ1ZDUEFNeR1RCQryOrIaC4jqyGgHwdWQ0Bf4COMv9983RkNQQU11GehgDdYQkhAkIJSwgRDEpYQohgWMnD6h/z82s64efk4wN+Gt8/9F5DmnExmi+s9KeSJOwDxAnn1+mEfYN53XtJ4yk35a81TBFdi5+zAWD/gAsHJxX2HuYL45useV9oYYySfp/Po1zxfyu2Ni9QnMT8/SfGA0HZ+2+DSZ+PGbPXMh34z713+x7Fr32Dhwe8/vqrvObE/77/8c5n+w9WQ0BxHVkNAfk6shoCiuvIagjI15HVEFBcR1ZDQL6OrIaA4jqyGgLydWQ1BBTXUZ6GAN1hCSECQglLCBEMSlhCiGBYycP69D7XZex+wJtQRxk/N9fqvjFXtcTPzdayajY67phGnTeY2qZpGx32Dbpd3+GtN+bmZddfvkHx7i43GQOA9cvXKN6p8jP+48ND/owuxwAwTfkalYyVMhn4WpezM/YOavUOx22+HrPZkvqgKtcUZaZ+ZuRnX+D2fW6stvEM/547V65SvLn9sV8kB6shoLiOrIaAfB1ZDQHFdWQ1BOTryGoIKK4jqyEgX0dWQ0BxHVkNAfk6shoCzkdHusMSQgSDEpYQIhiUsIQQwaCEJYQIhpVM9/1D06FxzN0H4xoXvDWbSyYwV8omZuOzHPtixIUx+upNNkeTuikkTHpujW98/VsUX7zGZmn7ip9IPB1ycd7Z4QOKDx7tUjwa+c6J6+stE7PRmS3ZYHrrzj2Kf/3+LYpLVb6ua5d9oezzr3E3STucZ9z1Ru7BMX/f39x6l+KvJPzbbez4Yts8rIaA4jqyGvrda5+tI6shoLiOrIaAfB1ZDQHFdWQ19LvXPltHVkNAcR1ZDQH5OrIaAs5HR7rDEkIEgxKWECIYlLCEEMGwkoeVzth/SKr8zL+I+Dm6lPllGw1+Lh5m/AycTv20j/KYn+mrZa6a2x+PKG5vbPvPTbhY7/D+bf73up+I8t9v/hefa4/9iUrCm1abLb8pt9HgdRcL6634vxU7V69QPC7xGr1jbiw3OvXe2aHxFq7umPPY8cccV3oUD8bsR2z2+LrefOVFt0YeVkNAcR1ZDQH5OrIaAorryGoIyNeR1RBQXEdWQ0C+jqyGgOI6shoC8nVkNQScj450hyWECAYlLCFEMChhCSGCYSUPa77gRvfjCT/z1+pc1zEc+WfgQcoN59vbXNjx+MhvMK0l/Nx8ef0SnxfYi2g0fP3XpN/lYzL+Lh9+5Dc/l2b8/ZKI/Rc7sbfV8o3/7SbVNON6oOkST8c2n3vpGX7mn19hz6Of+s3eaZnPfdzjeLpkoELLDBComKEEg1NuRle/wcMEVsFqCCiuI6shIF9HVkNAcR1ZDQH5OrIaAorryGoIyNfRskaYRXVkNQTk68hqCDgfHekOSwgRDEpYQohgUMISQgTDSh5WqWSGAcxMI7UZ573M/juAKcw+KVPbsnX1BXfMxqXnKW7vcFO01OzX6h7cdWs8uv0pxc8+/yzFFy/62q3evhngOue6lXqZ62Wish9oOjBN+xfGJ0kX/pgIfE1addtobWT+3Z97ZoyPvQd3+A1NP6SgXWUZ1OYcD4/4XI+WDFjIw2oIKK4jqyEgX0dWQ0BxHVkNAfk6shoCiuvIagjI15HVEFBcR1ZDQL6OrIaAc9JR4SOEEOIpoYQlhAgGJSwhRDAoYQkhgmEl093mtVI5oXhuCsSisjftqhGvcXrCxXh/87d/547Zufk1ij++y8V5x8YI7O194NY4G7ChOpuzkTsY+wZvjw54k+pmhwsJM/N9L21vuTXSfZ5i+7hvNthucvEiADz34pcovvb8Vyk+OzNFkWVvZL/71s8ovvU+G9X1JdOx51Uz6diYwYdDnsQyj4tPO1n2t7GojqyGgHwdWQ0BxXVkNQTk68hqCCiuI6shIF9HVkNAcR1ZDQH5OrIaAs5HR7rDEkIEgxKWECIYlLCEEMGwWuFolJgX2FtYlDnvVUp+2UXGRXPTCW9sffutt9wxG9dfo/iVr7Ifsb/Gz81HH/k14gs86ODazVcofnC6pMg15nXOTEHjeMCbRUs1/303NrkY72TEfkSj7QcMXDPFiC996VV+Q8aeQPf++26N9yYHFG+W2TeIUl+MOD7hDbRnphhxUefvVy79AcMDrIaAwjqyGgLydWQ1BBTXkdUQkK8jqyGguI6shoB8HVkNAcV1ZDUE5OvIagg4Jx0VPkIIIZ4SSlhCiGBQwhJCBMNKHlbV1FwMJ+wlZKYmpd7wfkVs/IrZGXsP//79H7hjavVnKP72d/+K4s1neZhlNvdfp9PkjZ/bz71McaPsn6Mn4Gf8iRlw2e/3KD7a85tjewNucLazw5tyr16/6o5Za3E9zO6n7INcvsQ1NmudJcMvauwlXDC+wXzJxvSGKaFZj/nvWGOT39D0H5uL1RBQXEdWQ0C+jqyGgOI6shoC8nVkNQQU15HVEJCvI6shoLiOrIaAfB1ZDQHnoyPdYQkhgkEJSwgRDEpYQohgWMnDmpr6lwttbpafNNsU18rewzrtc9P+O4+5jmO94wdI3Pn
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"text_1\">\n",
|
|||
|
" <!-- Masked - Loss: 158.48 -->\n",
|
|||
|
" <g transform=\"translate(48.20125 16.318125) scale(0.12 -0.12)\">\n",
|
|||
|
" <defs>\n",
|
|||
|
" <path id=\"DejaVuSans-4d\" d=\"M 628 4666 \n",
|
|||
|
"L 1569 4666 \n",
|
|||
|
"L 2759 1491 \n",
|
|||
|
"L 3956 4666 \n",
|
|||
|
"L 4897 4666 \n",
|
|||
|
"L 4897 0 \n",
|
|||
|
"L 4281 0 \n",
|
|||
|
"L 4281 4097 \n",
|
|||
|
"L 3078 897 \n",
|
|||
|
"L 2444 897 \n",
|
|||
|
"L 1241 4097 \n",
|
|||
|
"L 1241 0 \n",
|
|||
|
"L 628 0 \n",
|
|||
|
"L 628 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n",
|
|||
|
"Q 1497 1759 1228 1600 \n",
|
|||
|
"Q 959 1441 959 1056 \n",
|
|||
|
"Q 959 750 1161 570 \n",
|
|||
|
"Q 1363 391 1709 391 \n",
|
|||
|
"Q 2188 391 2477 730 \n",
|
|||
|
"Q 2766 1069 2766 1631 \n",
|
|||
|
"L 2766 1759 \n",
|
|||
|
"L 2194 1759 \n",
|
|||
|
"z\n",
|
|||
|
"M 3341 1997 \n",
|
|||
|
"L 3341 0 \n",
|
|||
|
"L 2766 0 \n",
|
|||
|
"L 2766 531 \n",
|
|||
|
"Q 2569 213 2275 61 \n",
|
|||
|
"Q 1981 -91 1556 -91 \n",
|
|||
|
"Q 1019 -91 701 211 \n",
|
|||
|
"Q 384 513 384 1019 \n",
|
|||
|
"Q 384 1609 779 1909 \n",
|
|||
|
"Q 1175 2209 1959 2209 \n",
|
|||
|
"L 2766 2209 \n",
|
|||
|
"L 2766 2266 \n",
|
|||
|
"Q 2766 2663 2505 2880 \n",
|
|||
|
"Q 2244 3097 1772 3097 \n",
|
|||
|
"Q 1472 3097 1187 3025 \n",
|
|||
|
"Q 903 2953 641 2809 \n",
|
|||
|
"L 641 3341 \n",
|
|||
|
"Q 956 3463 1253 3523 \n",
|
|||
|
"Q 1550 3584 1831 3584 \n",
|
|||
|
"Q 2591 3584 2966 3190 \n",
|
|||
|
"Q 3341 2797 3341 1997 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n",
|
|||
|
"L 2834 2853 \n",
|
|||
|
"Q 2591 2978 2328 3040 \n",
|
|||
|
"Q 2066 3103 1784 3103 \n",
|
|||
|
"Q 1356 3103 1142 2972 \n",
|
|||
|
"Q 928 2841 928 2578 \n",
|
|||
|
"Q 928 2378 1081 2264 \n",
|
|||
|
"Q 1234 2150 1697 2047 \n",
|
|||
|
"L 1894 2003 \n",
|
|||
|
"Q 2506 1872 2764 1633 \n",
|
|||
|
"Q 3022 1394 3022 966 \n",
|
|||
|
"Q 3022 478 2636 193 \n",
|
|||
|
"Q 2250 -91 1575 -91 \n",
|
|||
|
"Q 1294 -91 989 -36 \n",
|
|||
|
"Q 684 19 347 128 \n",
|
|||
|
"L 347 722 \n",
|
|||
|
"Q 666 556 975 473 \n",
|
|||
|
"Q 1284 391 1588 391 \n",
|
|||
|
"Q 1994 391 2212 530 \n",
|
|||
|
"Q 2431 669 2431 922 \n",
|
|||
|
"Q 2431 1156 2273 1281 \n",
|
|||
|
"Q 2116 1406 1581 1522 \n",
|
|||
|
"L 1381 1569 \n",
|
|||
|
"Q 847 1681 609 1914 \n",
|
|||
|
"Q 372 2147 372 2553 \n",
|
|||
|
"Q 372 3047 722 3315 \n",
|
|||
|
"Q 1072 3584 1716 3584 \n",
|
|||
|
"Q 2034 3584 2315 3537 \n",
|
|||
|
"Q 2597 3491 2834 3397 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6b\" d=\"M 581 4863 \n",
|
|||
|
"L 1159 4863 \n",
|
|||
|
"L 1159 1991 \n",
|
|||
|
"L 2875 3500 \n",
|
|||
|
"L 3609 3500 \n",
|
|||
|
"L 1753 1863 \n",
|
|||
|
"L 3688 0 \n",
|
|||
|
"L 2938 0 \n",
|
|||
|
"L 1159 1709 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n",
|
|||
|
"L 3597 1613 \n",
|
|||
|
"L 953 1613 \n",
|
|||
|
"Q 991 1019 1311 708 \n",
|
|||
|
"Q 1631 397 2203 397 \n",
|
|||
|
"Q 2534 397 2845 478 \n",
|
|||
|
"Q 3156 559 3463 722 \n",
|
|||
|
"L 3463 178 \n",
|
|||
|
"Q 3153 47 2828 -22 \n",
|
|||
|
"Q 2503 -91 2169 -91 \n",
|
|||
|
"Q 1331 -91 842 396 \n",
|
|||
|
"Q 353 884 353 1716 \n",
|
|||
|
"Q 353 2575 817 3079 \n",
|
|||
|
"Q 1281 3584 2069 3584 \n",
|
|||
|
"Q 2775 3584 3186 3129 \n",
|
|||
|
"Q 3597 2675 3597 1894 \n",
|
|||
|
"z\n",
|
|||
|
"M 3022 2063 \n",
|
|||
|
"Q 3016 2534 2758 2815 \n",
|
|||
|
"Q 2500 3097 2075 3097 \n",
|
|||
|
"Q 1594 3097 1305 2825 \n",
|
|||
|
"Q 1016 2553 972 2059 \n",
|
|||
|
"L 3022 2063 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n",
|
|||
|
"L 2906 4863 \n",
|
|||
|
"L 3481 4863 \n",
|
|||
|
"L 3481 0 \n",
|
|||
|
"L 2906 0 \n",
|
|||
|
"L 2906 525 \n",
|
|||
|
"Q 2725 213 2448 61 \n",
|
|||
|
"Q 2172 -91 1784 -91 \n",
|
|||
|
"Q 1150 -91 751 415 \n",
|
|||
|
"Q 353 922 353 1747 \n",
|
|||
|
"Q 353 2572 751 3078 \n",
|
|||
|
"Q 1150 3584 1784 3584 \n",
|
|||
|
"Q 2172 3584 2448 3432 \n",
|
|||
|
"Q 2725 3281 2906 2969 \n",
|
|||
|
"z\n",
|
|||
|
"M 947 1747 \n",
|
|||
|
"Q 947 1113 1208 752 \n",
|
|||
|
"Q 1469 391 1925 391 \n",
|
|||
|
"Q 2381 391 2643 752 \n",
|
|||
|
"Q 2906 1113 2906 1747 \n",
|
|||
|
"Q 2906 2381 2643 2742 \n",
|
|||
|
"Q 2381 3103 1925 3103 \n",
|
|||
|
"Q 1469 3103 1208 2742 \n",
|
|||
|
"Q 947 2381 947 1747 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-2d\" d=\"M 313 2009 \n",
|
|||
|
"L 1997 2009 \n",
|
|||
|
"L 1997 1497 \n",
|
|||
|
"L 313 1497 \n",
|
|||
|
"L 313 2009 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n",
|
|||
|
"L 1259 4666 \n",
|
|||
|
"L 1259 531 \n",
|
|||
|
"L 3531 531 \n",
|
|||
|
"L 3531 0 \n",
|
|||
|
"L 628 0 \n",
|
|||
|
"L 628 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n",
|
|||
|
"Q 1497 3097 1228 2736 \n",
|
|||
|
"Q 959 2375 959 1747 \n",
|
|||
|
"Q 959 1119 1226 758 \n",
|
|||
|
"Q 1494 397 1959 397 \n",
|
|||
|
"Q 2419 397 2687 759 \n",
|
|||
|
"Q 2956 1122 2956 1747 \n",
|
|||
|
"Q 2956 2369 2687 2733 \n",
|
|||
|
"Q 2419 3097 1959 3097 \n",
|
|||
|
"z\n",
|
|||
|
"M 1959 3584 \n",
|
|||
|
"Q 2709 3584 3137 3096 \n",
|
|||
|
"Q 3566 2609 3566 1747 \n",
|
|||
|
"Q 3566 888 3137 398 \n",
|
|||
|
"Q 2709 -91 1959 -91 \n",
|
|||
|
"Q 1206 -91 779 398 \n",
|
|||
|
"Q 353 888 353 1747 \n",
|
|||
|
"Q 353 2609 779 3096 \n",
|
|||
|
"Q 1206 3584 1959 3584 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-3a\" d=\"M 750 794 \n",
|
|||
|
"L 1409 794 \n",
|
|||
|
"L 1409 0 \n",
|
|||
|
"L 750 0 \n",
|
|||
|
"L 750 794 \n",
|
|||
|
"z\n",
|
|||
|
"M 750 3309 \n",
|
|||
|
"L 1409 3309 \n",
|
|||
|
"L 1409 2516 \n",
|
|||
|
"L 750 2516 \n",
|
|||
|
"L 750 3309 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-31\" d=\"M 794 531 \n",
|
|||
|
"L 1825 531 \n",
|
|||
|
"L 1825 4091 \n",
|
|||
|
"L 703 3866 \n",
|
|||
|
"L 703 4441 \n",
|
|||
|
"L 1819 4666 \n",
|
|||
|
"L 2450 4666 \n",
|
|||
|
"L 2450 531 \n",
|
|||
|
"L 3481 531 \n",
|
|||
|
"L 3481 0 \n",
|
|||
|
"L 794 0 \n",
|
|||
|
"L 794 531 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n",
|
|||
|
"L 3169 4666 \n",
|
|||
|
"L 3169 4134 \n",
|
|||
|
"L 1269 4134 \n",
|
|||
|
"L 1269 2991 \n",
|
|||
|
"Q 1406 3038 1543 3061 \n",
|
|||
|
"Q 1681 3084 1819 3084 \n",
|
|||
|
"Q 2600 3084 3056 2656 \n",
|
|||
|
"Q 3513 2228 3513 1497 \n",
|
|||
|
"Q 3513 744 3044 326 \n",
|
|||
|
"Q 2575 -91 1722 -91 \n",
|
|||
|
"Q 1428 -91 1123 -41 \n",
|
|||
|
"Q 819 9 494 109 \n",
|
|||
|
"L 494 744 \n",
|
|||
|
"Q 775 591 1075 516 \n",
|
|||
|
"Q 1375 441 1709 441 \n",
|
|||
|
"Q 2250 441 2565 725 \n",
|
|||
|
"Q 2881 1009 2881 1497 \n",
|
|||
|
"Q 2881 1984 2565 2268 \n",
|
|||
|
"Q 2250 2553 1709 2553 \n",
|
|||
|
"Q 1456 2553 1204 2497 \n",
|
|||
|
"Q 953 2441 691 2322 \n",
|
|||
|
"L 691 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n",
|
|||
|
"Q 1584 2216 1326 1975 \n",
|
|||
|
"Q 1069 1734 1069 1313 \n",
|
|||
|
"Q 1069 891 1326 650 \n",
|
|||
|
"Q 1584 409 2034 409 \n",
|
|||
|
"Q 2484 409 2743 651 \n",
|
|||
|
"Q 3003 894 3003 1313 \n",
|
|||
|
"Q 3003 1734 2745 1975 \n",
|
|||
|
"Q 2488 2216 2034 2216 \n",
|
|||
|
"z\n",
|
|||
|
"M 1403 2484 \n",
|
|||
|
"Q 997 2584 770 2862 \n",
|
|||
|
"Q 544 3141 544 3541 \n",
|
|||
|
"Q 544 4100 942 4425 \n",
|
|||
|
"Q 1341 4750 2034 4750 \n",
|
|||
|
"Q 2731 4750 3128 4425 \n",
|
|||
|
"Q 3525 4100 3525 3541 \n",
|
|||
|
"Q 3525 3141 3298 2862 \n",
|
|||
|
"Q 3072 2584 2669 2484 \n",
|
|||
|
"Q 3125 2378 3379 2068 \n",
|
|||
|
"Q 3634 1759 3634 1313 \n",
|
|||
|
"Q 3634 634 3220 271 \n",
|
|||
|
"Q 2806 -91 2034 -91 \n",
|
|||
|
"Q 1263 -91 848 271 \n",
|
|||
|
"Q 434 634 434 1313 \n",
|
|||
|
"Q 434 1759 690 2068 \n",
|
|||
|
"Q 947 2378 1403 2484 \n",
|
|||
|
"z\n",
|
|||
|
"M 1172 3481 \n",
|
|||
|
"Q 1172 3119 1398 2916 \n",
|
|||
|
"Q 1625 2713 2034 2713 \n",
|
|||
|
"Q 2441 2713 2670 2916 \n",
|
|||
|
"Q 2900 3119 2900 3481 \n",
|
|||
|
"Q 2900 3844 2670 4047 \n",
|
|||
|
"Q 2441 4250 2034 4250 \n",
|
|||
|
"Q 1625 4250 1398 4047 \n",
|
|||
|
"Q 1172 3844 1172 3481 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n",
|
|||
|
"L 1344 794 \n",
|
|||
|
"L 1344 0 \n",
|
|||
|
"L 684 0 \n",
|
|||
|
"L 684 794 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n",
|
|||
|
"L 825 1625 \n",
|
|||
|
"L 2419 1625 \n",
|
|||
|
"L 2419 4116 \n",
|
|||
|
"z\n",
|
|||
|
"M 2253 4666 \n",
|
|||
|
"L 3047 4666 \n",
|
|||
|
"L 3047 1625 \n",
|
|||
|
"L 3713 1625 \n",
|
|||
|
"L 3713 1100 \n",
|
|||
|
"L 3047 1100 \n",
|
|||
|
"L 3047 0 \n",
|
|||
|
"L 2419 0 \n",
|
|||
|
"L 2419 1100 \n",
|
|||
|
"L 313 1100 \n",
|
|||
|
"L 313 1709 \n",
|
|||
|
"L 2253 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-4d\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-61\" x=\"86.279297\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"147.558594\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6b\" x=\"199.658203\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-65\" x=\"253.943359\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-64\" x=\"315.466797\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"378.943359\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-2d\" x=\"410.730469\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"446.814453\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-4c\" x=\"478.601562\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"532.564453\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"593.746094\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"645.845703\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-3a\" x=\"697.945312\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"731.636719\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-31\" x=\"763.423828\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-35\" x=\"827.046875\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-38\" x=\"890.669922\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-2e\" x=\"954.292969\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-34\" x=\"986.080078\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-38\" x=\"1049.703125\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <clipPath id=\"p82b6a42c5a\">\n",
|
|||
|
" <rect x=\"7.2\" y=\"22.318125\" width=\"215.6\" height=\"110.88\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" </defs>\n",
|
|||
|
"</svg>\n"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 400x200 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMjMwIDE0MC40MDUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicZY9BT8MwDIXv/hXvuB2W2GnaZtzYBhWIy1ikHRCnru1WbUyliP193AoEE5Ge7GflfXHsqvo8lNVzscByQ/bXlT0JWlUDRqu6QFCoGmJ1J3LJUI9jFc/Gc6rub78nqqlDbtwoJ6nJIMImBLxX2OIN9laBvVJb1UV5Ba536DSWYXjpO/hDK0+wD4LVGWtao9MLzRVGPXW6PmOmWfi5CY4TcSnEecNBAbSIZO9FB4j1+Ku4oxdMNvtDPYVkZu5yDslwMPmodpjh6d/83Pc38BKMz6d4RXyku0i6En0BZaFLugplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjIyNQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDYxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI70ptBCOu/U+gCnlney3mcyaT4c/82AjsVLLBCAtICB5l4iSGqUa74JU8wXifwd708jZ/Hu5Ba8FSkH7g2beP9WLMmCpZGLIXZx74fJeR4avwbAj0XacKMTEYOJANxv9bnz3qTKYffgDRtTh8lSQ+iBbtbw44vCzJIelLDkp38sK4FVhehCXNjTSQjp1am5vnYM1zGE2MkqJoFJOkT96mCEWnGY+esJQ8yHE/14sWvt/Fa5jH1sqpAxjbBHGwnM+EURQTiF5QkN3EXTR3F0cxYc7vQUFLkvruHk5Ne95eTqMArIZzFWsIxQ09Z5mSnQQlUrZwAM6zXvjBO00YJd2q6vSv29fPMJIzbHHZWSqbBOQ7uZZM5gmSvOyZswuMQ8949gpGYN7+LLYIrlznXZPqxH0Ub6YPi+pyrKbMVJfxDlTyx4hr/n9/7+fP8/geMKH4jCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA3MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNjZXMFAwNASRRkYGCqZAVoohF0jA0MhEIZcLJAhi5YBZBkAaojgHriaHKwPMBmmFqAexIOqNLY2hKhEsiGwGVxoAp8gXrwplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAzOTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAxMzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTY9BDgMxCAPveYWfQCBAeM9WVQ/b/19L2HbTCx7JgGxRBoElh3iHG+HR2w/fRTYVZ+OcX1IpYiGYT3CfMFMcjSl38mOPgHGUaiynaHheS85NwxctdxMtpa2XkxlvuO6X90eVbZENRc8tC0LXbJL5MoEHfBiYR3XjaaXH3fZsr/b8AM5sNEkKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8ed
|
|||
|
"image/svg+xml": [
|
|||
|
"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n",
|
|||
|
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
|
|||
|
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
|
|||
|
"<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"230pt\" height=\"140.398125pt\" viewBox=\"0 0 230 140.398125\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n",
|
|||
|
" <metadata>\n",
|
|||
|
" <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n",
|
|||
|
" <cc:Work>\n",
|
|||
|
" <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
|
|||
|
" <dc:date>2024-02-20T13:49:03.158725</dc:date>\n",
|
|||
|
" <dc:format>image/svg+xml</dc:format>\n",
|
|||
|
" <dc:creator>\n",
|
|||
|
" <cc:Agent>\n",
|
|||
|
" <dc:title>Matplotlib v3.8.2, https://matplotlib.org/</dc:title>\n",
|
|||
|
" </cc:Agent>\n",
|
|||
|
" </dc:creator>\n",
|
|||
|
" </cc:Work>\n",
|
|||
|
" </rdf:RDF>\n",
|
|||
|
" </metadata>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <g id=\"figure_1\">\n",
|
|||
|
" <g id=\"patch_1\">\n",
|
|||
|
" <path d=\"M 0 140.398125 \n",
|
|||
|
"L 230 140.398125 \n",
|
|||
|
"L 230 0 \n",
|
|||
|
"L 0 0 \n",
|
|||
|
"z\n",
|
|||
|
"\" style=\"fill: #ffffff\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_1\">\n",
|
|||
|
" <g clip-path=\"url(#p8ff9b796fd)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAASwAAACaCAYAAAATmXWpAAAV6klEQVR4nO2d2Y9cx3XGz723955eZt84K0nNiCZpUUsoCbQiWUEUwQiQBc5bkP8hQR4D6DFAnpKHJG+BAwRIHBg2lBgJnAi25EiwJFobJVIzGg6HnK1n73273X3zoASYr07D0+wosAv8fm+ne6q6bt1Th5ffPVXHEZFACCHEAtxf9gAIIaRXGLAIIdbAgEUIsQYGLEKINTBgEUKsgQGLEGINDFiEEGtgwCKEWEOolz/6zl/9Kdi+EefCsQGwjw9qqo+/+evvgJ3bOwTbCUdVm+vXnwb7heefATtfKIBdq9VVH5U6frZy/wHYd+/dU21q1SrYQeCAHUuPgh3y9NhLJwc4juIJ2Njj//aDn2ZSCbCnx0fAHhyZUn2MT58He2ocxzqcxnslIhIJeWB7HtriGHag/537kz/7Y/XZaV577TX12fmJNti1jjGOOI51635e9bH62QbYsVAc7Egmq9qMjA2BPT2aAdt18fqmp/U8tzto/+yjW2B/9vkd1SYSwuW2s7sL9sFxEeyF+UXVx8lBDuxi4QjsakWvvWIB+21Uy2C3m9jGiyZVH1effh5/x/jdcNBUbaYn0PfGxybAHhlF+8//8i9UHyZ8wiKEWAMDFiHEGhiwCCHW0JOG5UZiYHcMraEVRt2g6DdUH888/xLY/WgNI4bWMDb9f9caxn6FtYaKoTXcWUG9zdvYV31cFdS9bt/+FOyvQmuIR7UO1g/J1BLYtRKOzQ/wWrKGHici8sI49hFxUE8M4uhnIiLRZATsTg3nuVRCbfQwj5qmiIhj6HrxxCDY+3vYx5ef4f0aHRsDe2npEtgjI9iniEjV0EIzKVwTQ4OTqk1lEHXcegWv12/g9YViOO8iIpevXAX7o/ffBjtnaMMiIht3V8AeHsHrHTHsXuATFiHEGhiwCCHWwIBFCLGGnjQsag3UGk6zMIu5Xv1SLqMfFQp4/dsHW2B3mjgfIiKe38K/MUTLwMwpExEvhH4VS2Le0dQi3pt2E7VFEZHjzT2w17aOwd7Poe4pInJ0gH6VHUCfODc5B3ZyALVjEZGfHeL9DJp4/ubkOa3jxhO4zDtDOGeRMH4fioRVH9lUGuy5yXGwZ8fwexGRd29+APaFy9fArlUqqs1Z8AmLEGINDFiEEGtgwCKEWENPGha1BmoNp3Ei+l71QzJuaHDHqNH92w9fBzvw9V7RTBK1T7+Jc1araV0zbPw7PbcwC/ZTT/0R2Fdmp1Uf7x9hXt0nxp7V5Yta5xt6DvfG7u/jOtnOYe7e5avLqo9aA3McIx6uiURc+2KziWNzAtzDGXdxnXmeDgu5LdQ+iye4F/jB/buqjWfkb07P4/XUjTxDees/VB8mfMIihFgDAxYhxBoYsAgh1sCARQixht4SRymOgv2oi6MzhpDfL3UfxftoLAv2jRu/AfaYsRleRGTCONTQ932wj4/zXX4Y5znUwZdKxzlss9bA+yAiUqniS6OJQRzH7v6OarNmHBbpxfBlzsrnuDH/kzvvqz5yR9jv1Bi+AAp3eQEUCYwk7TrOUSqE3/sdfb331tFv4g72IV3a1Kq4Bm7fxgTlZkNvxD8LPmERQqyBAYsQYg0MWIQQa+hJw6LWQK3hNI066o/9Uqni/fXCqJU+fR0LH0SjOmE15OG/uWYBibEp4wRHEfEE+/GbRjGMJuqp6yddNtWnMWl5oGEkJO+hziki8tm9L8BeuvIU2K023oeD3H3VR8f4m9ER9M1oXBeQ6AS4zGNJtBNh9MVGXSdgN9YxedgVnJNouEsycQcPqcxtbYDt+/renAWfsAgh1sCARQixBgYsQog19KRhUWug1nCaxfkZ3UcfDI8Og/39f8XNryv31sAOuV18xMHis67hZ0EHN52LiESMwr9izOv0NObz/darr6o+0glcA4M722Avrl5QbU6MAxkHwphXVzA026Cp/Tni4vX+5osvgP3pR6g/iojs7OAG/0wWNeZwBMeRTOnDNLNGAd6jLezz2Mh3FBEJ2jj3h9ufgz05jXmVvcAnLEKINTBgEUKsgQGLEGINDFiEEGvoSXSnOEpx9DQvv3hd9fHdf/xb9dlZ7Oxhcu3qvXWwN3fxe9fX85wwTqUVw89arS5Jrg6+vEkP4pwV9vClS1RKqotr1/BFzM42nmwbS2CSr4jIkrHRvlnHdRJz0G53ORDgySdxY/7XlrAa1Xs/+L5qM5DHsZ1s4guhmuB8VES/mAkcDBUDIUxIHhvRJ9l6UZyD1ACekDszhy9vVu7qNWHCJyxCiDUwYBFCrIEBixBiDT1pWNQaqDVAH1mtN/ZDahiTel/+3T8Eu5hH/e0nr39X9bG8iPeqXMbE2VJJJ9c6xpw8981fAzuaSYG9t66rZUea6GuZGN6bxVmsli0i8sSVi9hmEDXKZBrvw9aW3pg/NoK67UAGq6xffw6TuEVEjld/Cna7idf/xS4mT09f0gmdj116DOxMBrXhzCAmRouIJBKoOWcGMAaEY+i/f/+9/1R9mPAJixBiDQxYhBBrYMAihFhDTxoWtQZqDfj3ushIPzSaqAUuPX4F7GoRD1t881/+WfURieJYR4ziHsViQf9uA+c1nERdLzuKPhFp62XyrVe/BXbCyImrNPQcdVC2lVaA119vYZvZeZ0zt7GOvma2+fVXXlZt7g3i2nKNPMKhHPrms688o/qYW0B/9tuoOcdiWgtut3GtOR2j+rvz8H7EJyxCiDUwYBFCrIEBixBiDT1pWNQaqDXgH2B+WL/80z/8HdjZGSzgGrRxT2epiIcviojs7KJuOTKMvljrcshhyyjEsXJrFfs4RF88MXL3RERej/4IP3AxN63axa/cMPrn+v0NHMcq7sk9PMIiuCIi2QzmIn77D34f7EuXMd9PRCRWRV0z2sF1texdBtsbMhaAiNTqqAW7xrNOW3SbtnHwo3loZ8frcpjkGfAJixBiDQxYhBBrYMAihFgDAxYhxBp6Et0pjm7gOB5xcbT1Ff0798rLN3AcYZyz42O8n+OvflP1YdxOaRhVqqfPTag2beOwyLiHL4QiHby+2XO6StCHt7D698rqbbCLZVwTIiIzC/NgexHcZD41hYnAN258Q/VxbgavZ/H8ObAD7FJERJrGZv0DYy1KBP19IquTqT2j6njY2HgfaWsBPW9UsfIDXM/xYf0C6Cz4hEUIsQYGLEKINTBgEUKsoScNi1oDtQb4XvXQH7/3O5jUO7+IGl61gfcmCPQhj6YfVYxN9U0fvxcRqdfxs1YL5933fcPWfVSrOGfVykvYZ0cXYkkN4cbzVCYL9mAaE4NjRtEREZF2xxiLg3PSKp6oNiXjeo/zqP1mhnEcYa+LcxpVyYMmrr3c7oFqsr2BhyIECdRPL6Z0AZiz4BMWIcQaGLAIIdbAgEUIsYaeNCxqDVmwH3Wt4bjLYYv9UMzjpnGnjdefiBh6m1nIRETiZqHcoUGwXUfnnXUC1EY7bcMHjO8dV/+73myj70WMwsCHJzo3r1Kvgd0yftcx8u6aPmqJIiJm+Q8zZ67dZUkXS5hr6LioScbiqEm7bjd/xnvhethHsaQ3xN9/gAdOLj+JfuS4PYUf/N2HbkEIIb8kGLAIIdbAgEUIsYae/hNJrYFaw2nypbzqox9qFdQxy3WjcGwNtdFkRheBNRVI048iXXQ+L4T3wg0btvkbXXTOUNtoE6DtBLpN6QTXUSKaxHFFceyBq9eEGIVyA8fwtJAucuu10F9b5n5SY70Grs7Va7jo4+0QXl85pteAM46HZY6ex9zEk/rDHwTJJyxCiDUwYBFCrIEBixBiDQxYhBBr6El0pzhKcfQ0VbOsUJ/c/PgO/k4LXxBsb22BfW56WPWx9Bi+IJgwKil1WjqZuHCYB7vhY3KxY9zPgSTefxGRgQH08VAYxx6N4pyKiNxdu49jHZsDe2EJx+539DZzx8F7blY86nR5eRUyXk75xvVF4jhWr0tCZ6dpVFIy/Co9jC/VRESujV8Fu9oyXpJFsHJ7L/AJixBiDQxYhBBrYMAihFhDTxoWtQZqDfC9UeiiX3789k2wP91GLfQ
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"text_1\">\n",
|
|||
|
" <!-- Shifted - Loss: 418.47 -->\n",
|
|||
|
" <g transform=\"translate(49.799688 16.318125) scale(0.12 -0.12)\">\n",
|
|||
|
" <defs>\n",
|
|||
|
" <path id=\"DejaVuSans-53\" d=\"M 3425 4513 \n",
|
|||
|
"L 3425 3897 \n",
|
|||
|
"Q 3066 4069 2747 4153 \n",
|
|||
|
"Q 2428 4238 2131 4238 \n",
|
|||
|
"Q 1616 4238 1336 4038 \n",
|
|||
|
"Q 1056 3838 1056 3469 \n",
|
|||
|
"Q 1056 3159 1242 3001 \n",
|
|||
|
"Q 1428 2844 1947 2747 \n",
|
|||
|
"L 2328 2669 \n",
|
|||
|
"Q 3034 2534 3370 2195 \n",
|
|||
|
"Q 3706 1856 3706 1288 \n",
|
|||
|
"Q 3706 609 3251 259 \n",
|
|||
|
"Q 2797 -91 1919 -91 \n",
|
|||
|
"Q 1588 -91 1214 -16 \n",
|
|||
|
"Q 841 59 441 206 \n",
|
|||
|
"L 441 856 \n",
|
|||
|
"Q 825 641 1194 531 \n",
|
|||
|
"Q 1563 422 1919 422 \n",
|
|||
|
"Q 2459 422 2753 634 \n",
|
|||
|
"Q 3047 847 3047 1241 \n",
|
|||
|
"Q 3047 1584 2836 1778 \n",
|
|||
|
"Q 2625 1972 2144 2069 \n",
|
|||
|
"L 1759 2144 \n",
|
|||
|
"Q 1053 2284 737 2584 \n",
|
|||
|
"Q 422 2884 422 3419 \n",
|
|||
|
"Q 422 4038 858 4394 \n",
|
|||
|
"Q 1294 4750 2059 4750 \n",
|
|||
|
"Q 2388 4750 2728 4690 \n",
|
|||
|
"Q 3069 4631 3425 4513 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-68\" d=\"M 3513 2113 \n",
|
|||
|
"L 3513 0 \n",
|
|||
|
"L 2938 0 \n",
|
|||
|
"L 2938 2094 \n",
|
|||
|
"Q 2938 2591 2744 2837 \n",
|
|||
|
"Q 2550 3084 2163 3084 \n",
|
|||
|
"Q 1697 3084 1428 2787 \n",
|
|||
|
"Q 1159 2491 1159 1978 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 4863 \n",
|
|||
|
"L 1159 4863 \n",
|
|||
|
"L 1159 2956 \n",
|
|||
|
"Q 1366 3272 1645 3428 \n",
|
|||
|
"Q 1925 3584 2291 3584 \n",
|
|||
|
"Q 2894 3584 3203 3211 \n",
|
|||
|
"Q 3513 2838 3513 2113 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n",
|
|||
|
"L 1178 3500 \n",
|
|||
|
"L 1178 0 \n",
|
|||
|
"L 603 0 \n",
|
|||
|
"L 603 3500 \n",
|
|||
|
"z\n",
|
|||
|
"M 603 4863 \n",
|
|||
|
"L 1178 4863 \n",
|
|||
|
"L 1178 4134 \n",
|
|||
|
"L 603 4134 \n",
|
|||
|
"L 603 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-66\" d=\"M 2375 4863 \n",
|
|||
|
"L 2375 4384 \n",
|
|||
|
"L 1825 4384 \n",
|
|||
|
"Q 1516 4384 1395 4259 \n",
|
|||
|
"Q 1275 4134 1275 3809 \n",
|
|||
|
"L 1275 3500 \n",
|
|||
|
"L 2222 3500 \n",
|
|||
|
"L 2222 3053 \n",
|
|||
|
"L 1275 3053 \n",
|
|||
|
"L 1275 0 \n",
|
|||
|
"L 697 0 \n",
|
|||
|
"L 697 3053 \n",
|
|||
|
"L 147 3053 \n",
|
|||
|
"L 147 3500 \n",
|
|||
|
"L 697 3500 \n",
|
|||
|
"L 697 3744 \n",
|
|||
|
"Q 697 4328 969 4595 \n",
|
|||
|
"Q 1241 4863 1831 4863 \n",
|
|||
|
"L 2375 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n",
|
|||
|
"L 1172 3500 \n",
|
|||
|
"L 2356 3500 \n",
|
|||
|
"L 2356 3053 \n",
|
|||
|
"L 1172 3053 \n",
|
|||
|
"L 1172 1153 \n",
|
|||
|
"Q 1172 725 1289 603 \n",
|
|||
|
"Q 1406 481 1766 481 \n",
|
|||
|
"L 2356 481 \n",
|
|||
|
"L 2356 0 \n",
|
|||
|
"L 1766 0 \n",
|
|||
|
"Q 1100 0 847 248 \n",
|
|||
|
"Q 594 497 594 1153 \n",
|
|||
|
"L 594 3053 \n",
|
|||
|
"L 172 3053 \n",
|
|||
|
"L 172 3500 \n",
|
|||
|
"L 594 3500 \n",
|
|||
|
"L 594 4494 \n",
|
|||
|
"L 1172 4494 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n",
|
|||
|
"L 3597 1613 \n",
|
|||
|
"L 953 1613 \n",
|
|||
|
"Q 991 1019 1311 708 \n",
|
|||
|
"Q 1631 397 2203 397 \n",
|
|||
|
"Q 2534 397 2845 478 \n",
|
|||
|
"Q 3156 559 3463 722 \n",
|
|||
|
"L 3463 178 \n",
|
|||
|
"Q 3153 47 2828 -22 \n",
|
|||
|
"Q 2503 -91 2169 -91 \n",
|
|||
|
"Q 1331 -91 842 396 \n",
|
|||
|
"Q 353 884 353 1716 \n",
|
|||
|
"Q 353 2575 817 3079 \n",
|
|||
|
"Q 1281 3584 2069 3584 \n",
|
|||
|
"Q 2775 3584 3186 3129 \n",
|
|||
|
"Q 3597 2675 3597 1894 \n",
|
|||
|
"z\n",
|
|||
|
"M 3022 2063 \n",
|
|||
|
"Q 3016 2534 2758 2815 \n",
|
|||
|
"Q 2500 3097 2075 3097 \n",
|
|||
|
"Q 1594 3097 1305 2825 \n",
|
|||
|
"Q 1016 2553 972 2059 \n",
|
|||
|
"L 3022 2063 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n",
|
|||
|
"L 2906 4863 \n",
|
|||
|
"L 3481 4863 \n",
|
|||
|
"L 3481 0 \n",
|
|||
|
"L 2906 0 \n",
|
|||
|
"L 2906 525 \n",
|
|||
|
"Q 2725 213 2448 61 \n",
|
|||
|
"Q 2172 -91 1784 -91 \n",
|
|||
|
"Q 1150 -91 751 415 \n",
|
|||
|
"Q 353 922 353 1747 \n",
|
|||
|
"Q 353 2572 751 3078 \n",
|
|||
|
"Q 1150 3584 1784 3584 \n",
|
|||
|
"Q 2172 3584 2448 3432 \n",
|
|||
|
"Q 2725 3281 2906 2969 \n",
|
|||
|
"z\n",
|
|||
|
"M 947 1747 \n",
|
|||
|
"Q 947 1113 1208 752 \n",
|
|||
|
"Q 1469 391 1925 391 \n",
|
|||
|
"Q 2381 391 2643 752 \n",
|
|||
|
"Q 2906 1113 2906 1747 \n",
|
|||
|
"Q 2906 2381 2643 2742 \n",
|
|||
|
"Q 2381 3103 1925 3103 \n",
|
|||
|
"Q 1469 3103 1208 2742 \n",
|
|||
|
"Q 947 2381 947 1747 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-2d\" d=\"M 313 2009 \n",
|
|||
|
"L 1997 2009 \n",
|
|||
|
"L 1997 1497 \n",
|
|||
|
"L 313 1497 \n",
|
|||
|
"L 313 2009 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n",
|
|||
|
"L 1259 4666 \n",
|
|||
|
"L 1259 531 \n",
|
|||
|
"L 3531 531 \n",
|
|||
|
"L 3531 0 \n",
|
|||
|
"L 628 0 \n",
|
|||
|
"L 628 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n",
|
|||
|
"Q 1497 3097 1228 2736 \n",
|
|||
|
"Q 959 2375 959 1747 \n",
|
|||
|
"Q 959 1119 1226 758 \n",
|
|||
|
"Q 1494 397 1959 397 \n",
|
|||
|
"Q 2419 397 2687 759 \n",
|
|||
|
"Q 2956 1122 2956 1747 \n",
|
|||
|
"Q 2956 2369 2687 2733 \n",
|
|||
|
"Q 2419 3097 1959 3097 \n",
|
|||
|
"z\n",
|
|||
|
"M 1959 3584 \n",
|
|||
|
"Q 2709 3584 3137 3096 \n",
|
|||
|
"Q 3566 2609 3566 1747 \n",
|
|||
|
"Q 3566 888 3137 398 \n",
|
|||
|
"Q 2709 -91 1959 -91 \n",
|
|||
|
"Q 1206 -91 779 398 \n",
|
|||
|
"Q 353 888 353 1747 \n",
|
|||
|
"Q 353 2609 779 3096 \n",
|
|||
|
"Q 1206 3584 1959 3584 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n",
|
|||
|
"L 2834 2853 \n",
|
|||
|
"Q 2591 2978 2328 3040 \n",
|
|||
|
"Q 2066 3103 1784 3103 \n",
|
|||
|
"Q 1356 3103 1142 2972 \n",
|
|||
|
"Q 928 2841 928 2578 \n",
|
|||
|
"Q 928 2378 1081 2264 \n",
|
|||
|
"Q 1234 2150 1697 2047 \n",
|
|||
|
"L 1894 2003 \n",
|
|||
|
"Q 2506 1872 2764 1633 \n",
|
|||
|
"Q 3022 1394 3022 966 \n",
|
|||
|
"Q 3022 478 2636 193 \n",
|
|||
|
"Q 2250 -91 1575 -91 \n",
|
|||
|
"Q 1294 -91 989 -36 \n",
|
|||
|
"Q 684 19 347 128 \n",
|
|||
|
"L 347 722 \n",
|
|||
|
"Q 666 556 975 473 \n",
|
|||
|
"Q 1284 391 1588 391 \n",
|
|||
|
"Q 1994 391 2212 530 \n",
|
|||
|
"Q 2431 669 2431 922 \n",
|
|||
|
"Q 2431 1156 2273 1281 \n",
|
|||
|
"Q 2116 1406 1581 1522 \n",
|
|||
|
"L 1381 1569 \n",
|
|||
|
"Q 847 1681 609 1914 \n",
|
|||
|
"Q 372 2147 372 2553 \n",
|
|||
|
"Q 372 3047 722 3315 \n",
|
|||
|
"Q 1072 3584 1716 3584 \n",
|
|||
|
"Q 2034 3584 2315 3537 \n",
|
|||
|
"Q 2597 3491 2834 3397 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-3a\" d=\"M 750 794 \n",
|
|||
|
"L 1409 794 \n",
|
|||
|
"L 1409 0 \n",
|
|||
|
"L 750 0 \n",
|
|||
|
"L 750 794 \n",
|
|||
|
"z\n",
|
|||
|
"M 750 3309 \n",
|
|||
|
"L 1409 3309 \n",
|
|||
|
"L 1409 2516 \n",
|
|||
|
"L 750 2516 \n",
|
|||
|
"L 750 3309 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-34\" d=\"M 2419 4116 \n",
|
|||
|
"L 825 1625 \n",
|
|||
|
"L 2419 1625 \n",
|
|||
|
"L 2419 4116 \n",
|
|||
|
"z\n",
|
|||
|
"M 2253 4666 \n",
|
|||
|
"L 3047 4666 \n",
|
|||
|
"L 3047 1625 \n",
|
|||
|
"L 3713 1625 \n",
|
|||
|
"L 3713 1100 \n",
|
|||
|
"L 3047 1100 \n",
|
|||
|
"L 3047 0 \n",
|
|||
|
"L 2419 0 \n",
|
|||
|
"L 2419 1100 \n",
|
|||
|
"L 313 1100 \n",
|
|||
|
"L 313 1709 \n",
|
|||
|
"L 2253 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-31\" d=\"M 794 531 \n",
|
|||
|
"L 1825 531 \n",
|
|||
|
"L 1825 4091 \n",
|
|||
|
"L 703 3866 \n",
|
|||
|
"L 703 4441 \n",
|
|||
|
"L 1819 4666 \n",
|
|||
|
"L 2450 4666 \n",
|
|||
|
"L 2450 531 \n",
|
|||
|
"L 3481 531 \n",
|
|||
|
"L 3481 0 \n",
|
|||
|
"L 794 0 \n",
|
|||
|
"L 794 531 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-38\" d=\"M 2034 2216 \n",
|
|||
|
"Q 1584 2216 1326 1975 \n",
|
|||
|
"Q 1069 1734 1069 1313 \n",
|
|||
|
"Q 1069 891 1326 650 \n",
|
|||
|
"Q 1584 409 2034 409 \n",
|
|||
|
"Q 2484 409 2743 651 \n",
|
|||
|
"Q 3003 894 3003 1313 \n",
|
|||
|
"Q 3003 1734 2745 1975 \n",
|
|||
|
"Q 2488 2216 2034 2216 \n",
|
|||
|
"z\n",
|
|||
|
"M 1403 2484 \n",
|
|||
|
"Q 997 2584 770 2862 \n",
|
|||
|
"Q 544 3141 544 3541 \n",
|
|||
|
"Q 544 4100 942 4425 \n",
|
|||
|
"Q 1341 4750 2034 4750 \n",
|
|||
|
"Q 2731 4750 3128 4425 \n",
|
|||
|
"Q 3525 4100 3525 3541 \n",
|
|||
|
"Q 3525 3141 3298 2862 \n",
|
|||
|
"Q 3072 2584 2669 2484 \n",
|
|||
|
"Q 3125 2378 3379 2068 \n",
|
|||
|
"Q 3634 1759 3634 1313 \n",
|
|||
|
"Q 3634 634 3220 271 \n",
|
|||
|
"Q 2806 -91 2034 -91 \n",
|
|||
|
"Q 1263 -91 848 271 \n",
|
|||
|
"Q 434 634 434 1313 \n",
|
|||
|
"Q 434 1759 690 2068 \n",
|
|||
|
"Q 947 2378 1403 2484 \n",
|
|||
|
"z\n",
|
|||
|
"M 1172 3481 \n",
|
|||
|
"Q 1172 3119 1398 2916 \n",
|
|||
|
"Q 1625 2713 2034 2713 \n",
|
|||
|
"Q 2441 2713 2670 2916 \n",
|
|||
|
"Q 2900 3119 2900 3481 \n",
|
|||
|
"Q 2900 3844 2670 4047 \n",
|
|||
|
"Q 2441 4250 2034 4250 \n",
|
|||
|
"Q 1625 4250 1398 4047 \n",
|
|||
|
"Q 1172 3844 1172 3481 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n",
|
|||
|
"L 1344 794 \n",
|
|||
|
"L 1344 0 \n",
|
|||
|
"L 684 0 \n",
|
|||
|
"L 684 794 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-37\" d=\"M 525 4666 \n",
|
|||
|
"L 3525 4666 \n",
|
|||
|
"L 3525 4397 \n",
|
|||
|
"L 1831 0 \n",
|
|||
|
"L 1172 0 \n",
|
|||
|
"L 2766 4134 \n",
|
|||
|
"L 525 4134 \n",
|
|||
|
"L 525 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-53\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-68\" x=\"63.476562\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-69\" x=\"126.855469\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-66\" x=\"154.638672\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-74\" x=\"188.09375\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-65\" x=\"227.302734\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-64\" x=\"288.826172\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"352.302734\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-2d\" x=\"384.089844\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"420.173828\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-4c\" x=\"451.960938\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"505.923828\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"567.105469\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"619.205078\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-3a\" x=\"671.304688\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"704.996094\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-34\" x=\"736.783203\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-31\" x=\"800.40625\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-38\" x=\"864.029297\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-2e\" x=\"927.652344\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-34\" x=\"959.439453\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-37\" x=\"1023.0625\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <clipPath id=\"p8ff9b796fd\">\n",
|
|||
|
" <rect x=\"7.2\" y=\"22.318125\" width=\"215.6\" height=\"110.88\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" </defs>\n",
|
|||
|
"</svg>\n"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 400x200 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMjMwIDE0MC40MDUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicVY/BTsMwEETv+xVzTA61vY7tutwohQgEh1JLHBAHlKaBQKmCJfr7bCIQ1NJod6yd57VetV+vTXtfL3GxIf3nmkyMXtTBoBcdwahFHRlxe7LVWN+nys4oZ7y4//0L0Y4GzJWdZNmrAGajYsRniwd8QJ8LMAu1Fx2FV+N0h0FiAeNLP8FfWrOHvmasDljTGoMMdCcY8TTI+gYzycJFxcGZYD3YOmWiAGiZSF+xXCDtpl+lLT2iuHvObyUqr9iP80W7xQy3JTiohZ2bWI0HxSHnM9iFV9aUeEK6octEsgx9A5r+Sj8KZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoyMjkKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTggMCBvYmoKPDwgL0xlbmd0aCA2MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggOTAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY7LDcAwCEPvTMEI4VMC+1RVD8n+14Z8esEPW8i4CRYMH6PahZUDb4KxJ3VgXV4DFUIWGWTk2zsXi0pmFr+aJqkT0iRx3kShO01KnQ+009vghecD9ekd7AplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCA3MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNjZXMFAwNASRRkYGCqZAVoohF0jA0MhEIZcLJAhi5YBZBkAaojgHriaHKwPMBmmFqAexIOqNLY2hKhEsiGwGVxoAp8gXrwplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggNTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzYzVDBQMLFUMDI2UTA2NAJiE4UUQy6gCIiVywUTywGzQKpyuKDKc2CqcrgyuNIABRgOMgplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPcw5EoAwCAXQnlP8I4TIIvdxHIt4/1Yw0QYeq3qgITiDusGt4WDKunQT71Pj1cacEgmoeEpNlroLetS0vtS+aOC76+ZL1Yk/zc8XnQ+7HRndCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAzMjIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkK
|
|||
|
"image/svg+xml": [
|
|||
|
"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n",
|
|||
|
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
|
|||
|
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
|
|||
|
"<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"230pt\" height=\"140.398125pt\" viewBox=\"0 0 230 140.398125\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n",
|
|||
|
" <metadata>\n",
|
|||
|
" <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n",
|
|||
|
" <cc:Work>\n",
|
|||
|
" <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
|
|||
|
" <dc:date>2024-02-20T13:49:03.182878</dc:date>\n",
|
|||
|
" <dc:format>image/svg+xml</dc:format>\n",
|
|||
|
" <dc:creator>\n",
|
|||
|
" <cc:Agent>\n",
|
|||
|
" <dc:title>Matplotlib v3.8.2, https://matplotlib.org/</dc:title>\n",
|
|||
|
" </cc:Agent>\n",
|
|||
|
" </dc:creator>\n",
|
|||
|
" </cc:Work>\n",
|
|||
|
" </rdf:RDF>\n",
|
|||
|
" </metadata>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <g id=\"figure_1\">\n",
|
|||
|
" <g id=\"patch_1\">\n",
|
|||
|
" <path d=\"M 0 140.398125 \n",
|
|||
|
"L 230 140.398125 \n",
|
|||
|
"L 230 0 \n",
|
|||
|
"L 0 0 \n",
|
|||
|
"z\n",
|
|||
|
"\" style=\"fill: #ffffff\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_1\">\n",
|
|||
|
" <g clip-path=\"url(#p419d777ff0)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAASwAAACaCAYAAAATmXWpAAAYBElEQVR4nO2d2W8k53XFT/XObpLd3LcZbqMRqfHM2CNZkSWMFdkKoghGgCxw3oL8DwnymH8iD0neAj8ESJwHG0qMBE4Mb5BhS4otaeQZcTQ7973Zze5m73kwAvjcr4HqckAaH3B+b7fJ+rq6+uCy6vDe7wYAuhBCCA+I/bZPQAgh+kUJSwjhDUpYQghvUMISQniDEpYQwhuUsIQQ3qCEJYTwBiUsIYQ3JPr5pW/87V9T3DR5LpkZpPhov+as8fd/9w2Kd3YPKA6SaeeYV175IsWvv/YyxcWTE4prtTNnjcoZv7b29BnFDx8/do6pVasUd7sBxZnhCYoTcffcy8f7fB6lY4p5xf9bh1/ND2Upnpsap3hkfNZZY2ruCsWzU3yuY8P8XQFAKhGnOB7nGIGJu+7fub/6m790Xvt1rIaA6DqyGgLCdWQ1BETXkdUQEK4jqyEguo6shoBwHVkNAdF1ZDUEhOvIagiIrqMwDQG6wxJCeIQSlhDCG5SwhBDe0JeHFUtlKO50+Fm0lRyguNSsO2u8/NpXKM4k+JhUvuAcMz45yvFEnuLJOc63c3Oup9PucPzTD+/wGp/ec45JJfiybG1vU7x/VKJ4aXHZWeN4f4fi0skhxdWK6/OVTnjdSvWU4ntr7JPEn+w5a9wE+xV3735CcbLbcI6Zm2Z/YmpymuLxCY4H0q4PFobVEBBdR1ZDQLiOrIaA6DqyGgLCdWQ1BETXkdUQEK4jqyEguo6shoBwHVkNAeeko8hHCCHEbwklLCGENyhhCSG8oS8PKze0QnGtzM+vzS4/8xam3OfZ16d4jVTANSfdAfYiACCdS1HcqfGzeLnM9TMHRbf2JTC1HwPZEYr3dnmNX73Gz/QTk5MUr6xco3h8nNcEgKqpl8kPsW8yOjLjHFMZ4Xqfswp/3madP18i43oN12/cpPjD99+leMfUDwHAk4drFI+N8+cdN/HSvFunE4bVEBBdR1ZDQLiOrIaA6DqyGgLCdWQ1BETXkdUQEK4jqyEguo6shoBwHVkNAeejI91hCSG8QQlLCOENSlhCCG/oy8M6PWWv4eSEn5M39zco7jT4mRkA4s0W/44pbunaviMA8QT7D5lcjuLZZX5+bzfcGpSj9V2KH2wcUby3w7UxAHC4z/5DYZB9g0szCxTnBt0ao58e8DN/t8GzPmYuuTVjA1n+OjqjfM1SSf55IpV01igMDVO8MDNF8fwk/xwAfvbBzyl+7votimuVCsVByv2uwrAaAqLryGoICNeR1RAQXUdWQ0C4jqyGgOg6shoCwnVkNQRE15HVEBCuI6sh4Hx0pDssIYQ3KGEJIbxBCUsI4Q1KWEIIb+ivcHTAFCgeceHZf3znHYq7Tbd4LZ/jgr5mg43AWs0t+kyafLqwNE/xSy/9BcU35uecNd4/5GbRj81mbKtX3eK10Vd507e9PTZ/N3e4KfX6zVVnjVqdG3dTcTZ6swOuUd9o8LkF3TbFAzE2kONx9+vb2eCCvtIxb3D37OlD55i4aUyeW+TPc2aaZy8bA7YfHA0BkXVkNQSE68hqCIiuI6shIFxHVkNAdB1ZDQHhOrIaAqLryGoICNeR1RBwPjrSHZYQwhuUsIQQ3qCEJYTwhr48rLMmF3ilMwWKb9/+PYone2yaNm02vm82mxQfHRV7vDE/jyc6XHx4tMPHPKjzszoAVKpcWDg9wuexvbflHPPADBSIZ7jgb+1T3rzt43vvO2vsHPK6s5NcJJjsUWya6ppG3jO+RkMJ/nmz437ex4/YWxgIeA30OKZWZa/k7l1uZG3U+brXz9wCzjCshoDoOrIaAvrQUY8BElF1ZDUEhOvIagiIriOrISBcR1ZDQHQdWQ0B4TqyGgLOR0e6wxJCeIMSlhDCG5SwhBDe0JeHVamyDxBPck3NF195jeJ02vUrEnHOjbEYx5Ozrk8QB6/TbJjn5gbX3Dw67rGB3zA3tg7WTdPqrrvR/y8ff0bxyo2XKG61+Xl9f+eps0bH/M7EOPsX6QGupwGATpe/jkyO42yS/Yr6mdvsXX/EDaYx8DVJJ3s0nHZ4kMHOxhOKm03+bpYXL7trhGA1BETXkdUQEK4jqyEguo6shoBwHVkNAdF1ZDUEhOvIagiIriOrIaAPHXXcoSrnoSPdYQkhvEEJSwjhDUpYQghvUMISQnhDX6b72MQYxd/69/+ieO3xA1401sNADwKKY8ZA7XZ4J0UASGXMZFhjFs7NcZPqH7z9trPGcJaN3ZGtTYqX7z/nHHNspowMJrlZ9MQUI3YbrtmfivHn/f03Xqf4kw/dKSNbW7xrZb7AhZPJFJ9HbshtBi4M8zU73OA1j3o08nbbfO0PNj+leGaOm4XffOMVZ41v/vM/OK/9OlZDQHQdWQ0B4TpyNARE1pHVEBCuI6shILqOrIaAcB1ZDQHRdWQ1BITryGoIiK6jMA0BusMSQniEEpYQwhuUsIQQ3tCXh7W1y02Y9x8/onh9m38ea7qeTtZOLzF+RKvVoxEy4AK/4RF+tj7Z5eK8NMrOErducbHe1iZPQMlk3WbRFbMZW+OMvZRMwHG7x+aDL77IG7h9boWnFr/37W85xwwW+dyO17lwsAbTlNujKLIb8Fc6mOCm1clxdyJKPM3XYGiQp6hcXuACv8mC61eEYTUERNeRoyEgXEeB2+wdVUdWQ0C4jqyGgOg6shoCwnVkNQRE15HVEBCuI6sh4Hx0pDssIYQ3KGEJIbxBCUsI4Q19eVhDY9z8+eYf/znFpSLXaPzgnW86a6wu8zP96Sk3WJbLbiNvYJ6bX/3q71Cczg9RvPvI3Tw/1WA/Ip/h5/fl+UnnmC/cuMrHjHAdS26Yn9c3Nlx/ZnKca3sG8xMUv/IqN/oCwNH9H1PcbvDn/2ybG2znrnFdCwA8f+15ivN5riHKj3DzLABks1yXlB9kryiZYY8jm3UbmcOwGgKi68hqCAjXkdUQEF1HVkNAuI6shoDoOrIaAsJ1ZDUERNeR1RAQriOrIeB8dKQ7LCGENyhhCSG8QQlLCOENfXlY9QbXi6y8cIPiaok35P/hv/2rs0Yqzc+z42YAZKl04r5vnZ+9kzmu/ShMsG+Qarsf52tvf43irOmbqtTd5+iOaeFqdfnzn7X4mPlFtz/vySP2I+wxv/vWm84xj0fYf4mZXrPRHfYvvvTWy84aC0vsezTbXJeUybj1Mu02+zFBh4/pBOYaBe7GcmFYDQHRdWQ1BITryGoIiK4jqyEgXEdWQ0B0HVkN9TrG6shqCIiuI6shIFxHVkPA+ehId1hCCG9QwhJCeIMSlhDCG5SwhBDe0Jfp/i//9I8UFy6vUtxt82Zl5RJPFAGArW0uxhsfY4O11mMCTMtMl127c5/XOGCD9XjTbfx8J/1dfiHGDZfVHqZ7LMmX5dHTJ3we93mjuYPDA2eNQp4bbL/+Z39K8bXr3MQKAJkqF+ylO2wYr8avUxwfdZ3d2hkXOcbM36Q23GPaZpqJnUTTiXPBX+s3+DtnNQRE15HVEBCuI6shILqOHA0BoTqyGgKi68hqCAjXkdUQEF1HVkNAuI6shoDz0ZHusIQQ3qCEJYTwBiUsIYQ39OVhvfXmbYrbSX62PjriZ/6pt7/qrGEe+VGvNyieuzTtHNM2AwUG4lw4mOpwvp2/5E6S/cWdOxSv3b9LcenUHRZweWmR4niKNyKbneVm0du3v+yscekyf57lK5co7vKSAICG2dBt33o2Kf66pgtu43Y8wQV9SbM5W6rtbvpXNJOOm132fQbGeE23FDMcqyEguo6shoBwHVkNAdF1ZDUEhOvIagiIriOrISBcR1ZDQHQdWQ0B4TqyGgLOR0e6wxJCeIMSlhDCG5SwhBDe0JeH9Sd/xM2fi8tc61Gt8/N7t+sOlLBeQ8VsvNZo8s8B4OyMX2u1+Pm82Wya2F2jWuVn62rlK7xmx33mHxrlzcmG8gWKR4a5eTSTcpty2x1zLgFfk1bp2DmmbD7vUZHrg/JjfB7JeA8jrMtfabfBf5N2tvedQzaf8MZ53SzX2Fwd4iGhRz02WwzDagiIriO
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"text_1\">\n",
|
|||
|
" <!-- Masked - Loss: 295.20 -->\n",
|
|||
|
" <g transform=\"translate(48.20125 16.318125) scale(0.12 -0.12)\">\n",
|
|||
|
" <defs>\n",
|
|||
|
" <path id=\"DejaVuSans-4d\" d=\"M 628 4666 \n",
|
|||
|
"L 1569 4666 \n",
|
|||
|
"L 2759 1491 \n",
|
|||
|
"L 3956 4666 \n",
|
|||
|
"L 4897 4666 \n",
|
|||
|
"L 4897 0 \n",
|
|||
|
"L 4281 0 \n",
|
|||
|
"L 4281 4097 \n",
|
|||
|
"L 3078 897 \n",
|
|||
|
"L 2444 897 \n",
|
|||
|
"L 1241 4097 \n",
|
|||
|
"L 1241 0 \n",
|
|||
|
"L 628 0 \n",
|
|||
|
"L 628 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n",
|
|||
|
"Q 1497 1759 1228 1600 \n",
|
|||
|
"Q 959 1441 959 1056 \n",
|
|||
|
"Q 959 750 1161 570 \n",
|
|||
|
"Q 1363 391 1709 391 \n",
|
|||
|
"Q 2188 391 2477 730 \n",
|
|||
|
"Q 2766 1069 2766 1631 \n",
|
|||
|
"L 2766 1759 \n",
|
|||
|
"L 2194 1759 \n",
|
|||
|
"z\n",
|
|||
|
"M 3341 1997 \n",
|
|||
|
"L 3341 0 \n",
|
|||
|
"L 2766 0 \n",
|
|||
|
"L 2766 531 \n",
|
|||
|
"Q 2569 213 2275 61 \n",
|
|||
|
"Q 1981 -91 1556 -91 \n",
|
|||
|
"Q 1019 -91 701 211 \n",
|
|||
|
"Q 384 513 384 1019 \n",
|
|||
|
"Q 384 1609 779 1909 \n",
|
|||
|
"Q 1175 2209 1959 2209 \n",
|
|||
|
"L 2766 2209 \n",
|
|||
|
"L 2766 2266 \n",
|
|||
|
"Q 2766 2663 2505 2880 \n",
|
|||
|
"Q 2244 3097 1772 3097 \n",
|
|||
|
"Q 1472 3097 1187 3025 \n",
|
|||
|
"Q 903 2953 641 2809 \n",
|
|||
|
"L 641 3341 \n",
|
|||
|
"Q 956 3463 1253 3523 \n",
|
|||
|
"Q 1550 3584 1831 3584 \n",
|
|||
|
"Q 2591 3584 2966 3190 \n",
|
|||
|
"Q 3341 2797 3341 1997 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n",
|
|||
|
"L 2834 2853 \n",
|
|||
|
"Q 2591 2978 2328 3040 \n",
|
|||
|
"Q 2066 3103 1784 3103 \n",
|
|||
|
"Q 1356 3103 1142 2972 \n",
|
|||
|
"Q 928 2841 928 2578 \n",
|
|||
|
"Q 928 2378 1081 2264 \n",
|
|||
|
"Q 1234 2150 1697 2047 \n",
|
|||
|
"L 1894 2003 \n",
|
|||
|
"Q 2506 1872 2764 1633 \n",
|
|||
|
"Q 3022 1394 3022 966 \n",
|
|||
|
"Q 3022 478 2636 193 \n",
|
|||
|
"Q 2250 -91 1575 -91 \n",
|
|||
|
"Q 1294 -91 989 -36 \n",
|
|||
|
"Q 684 19 347 128 \n",
|
|||
|
"L 347 722 \n",
|
|||
|
"Q 666 556 975 473 \n",
|
|||
|
"Q 1284 391 1588 391 \n",
|
|||
|
"Q 1994 391 2212 530 \n",
|
|||
|
"Q 2431 669 2431 922 \n",
|
|||
|
"Q 2431 1156 2273 1281 \n",
|
|||
|
"Q 2116 1406 1581 1522 \n",
|
|||
|
"L 1381 1569 \n",
|
|||
|
"Q 847 1681 609 1914 \n",
|
|||
|
"Q 372 2147 372 2553 \n",
|
|||
|
"Q 372 3047 722 3315 \n",
|
|||
|
"Q 1072 3584 1716 3584 \n",
|
|||
|
"Q 2034 3584 2315 3537 \n",
|
|||
|
"Q 2597 3491 2834 3397 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6b\" d=\"M 581 4863 \n",
|
|||
|
"L 1159 4863 \n",
|
|||
|
"L 1159 1991 \n",
|
|||
|
"L 2875 3500 \n",
|
|||
|
"L 3609 3500 \n",
|
|||
|
"L 1753 1863 \n",
|
|||
|
"L 3688 0 \n",
|
|||
|
"L 2938 0 \n",
|
|||
|
"L 1159 1709 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n",
|
|||
|
"L 3597 1613 \n",
|
|||
|
"L 953 1613 \n",
|
|||
|
"Q 991 1019 1311 708 \n",
|
|||
|
"Q 1631 397 2203 397 \n",
|
|||
|
"Q 2534 397 2845 478 \n",
|
|||
|
"Q 3156 559 3463 722 \n",
|
|||
|
"L 3463 178 \n",
|
|||
|
"Q 3153 47 2828 -22 \n",
|
|||
|
"Q 2503 -91 2169 -91 \n",
|
|||
|
"Q 1331 -91 842 396 \n",
|
|||
|
"Q 353 884 353 1716 \n",
|
|||
|
"Q 353 2575 817 3079 \n",
|
|||
|
"Q 1281 3584 2069 3584 \n",
|
|||
|
"Q 2775 3584 3186 3129 \n",
|
|||
|
"Q 3597 2675 3597 1894 \n",
|
|||
|
"z\n",
|
|||
|
"M 3022 2063 \n",
|
|||
|
"Q 3016 2534 2758 2815 \n",
|
|||
|
"Q 2500 3097 2075 3097 \n",
|
|||
|
"Q 1594 3097 1305 2825 \n",
|
|||
|
"Q 1016 2553 972 2059 \n",
|
|||
|
"L 3022 2063 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n",
|
|||
|
"L 2906 4863 \n",
|
|||
|
"L 3481 4863 \n",
|
|||
|
"L 3481 0 \n",
|
|||
|
"L 2906 0 \n",
|
|||
|
"L 2906 525 \n",
|
|||
|
"Q 2725 213 2448 61 \n",
|
|||
|
"Q 2172 -91 1784 -91 \n",
|
|||
|
"Q 1150 -91 751 415 \n",
|
|||
|
"Q 353 922 353 1747 \n",
|
|||
|
"Q 353 2572 751 3078 \n",
|
|||
|
"Q 1150 3584 1784 3584 \n",
|
|||
|
"Q 2172 3584 2448 3432 \n",
|
|||
|
"Q 2725 3281 2906 2969 \n",
|
|||
|
"z\n",
|
|||
|
"M 947 1747 \n",
|
|||
|
"Q 947 1113 1208 752 \n",
|
|||
|
"Q 1469 391 1925 391 \n",
|
|||
|
"Q 2381 391 2643 752 \n",
|
|||
|
"Q 2906 1113 2906 1747 \n",
|
|||
|
"Q 2906 2381 2643 2742 \n",
|
|||
|
"Q 2381 3103 1925 3103 \n",
|
|||
|
"Q 1469 3103 1208 2742 \n",
|
|||
|
"Q 947 2381 947 1747 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-2d\" d=\"M 313 2009 \n",
|
|||
|
"L 1997 2009 \n",
|
|||
|
"L 1997 1497 \n",
|
|||
|
"L 313 1497 \n",
|
|||
|
"L 313 2009 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-4c\" d=\"M 628 4666 \n",
|
|||
|
"L 1259 4666 \n",
|
|||
|
"L 1259 531 \n",
|
|||
|
"L 3531 531 \n",
|
|||
|
"L 3531 0 \n",
|
|||
|
"L 628 0 \n",
|
|||
|
"L 628 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n",
|
|||
|
"Q 1497 3097 1228 2736 \n",
|
|||
|
"Q 959 2375 959 1747 \n",
|
|||
|
"Q 959 1119 1226 758 \n",
|
|||
|
"Q 1494 397 1959 397 \n",
|
|||
|
"Q 2419 397 2687 759 \n",
|
|||
|
"Q 2956 1122 2956 1747 \n",
|
|||
|
"Q 2956 2369 2687 2733 \n",
|
|||
|
"Q 2419 3097 1959 3097 \n",
|
|||
|
"z\n",
|
|||
|
"M 1959 3584 \n",
|
|||
|
"Q 2709 3584 3137 3096 \n",
|
|||
|
"Q 3566 2609 3566 1747 \n",
|
|||
|
"Q 3566 888 3137 398 \n",
|
|||
|
"Q 2709 -91 1959 -91 \n",
|
|||
|
"Q 1206 -91 779 398 \n",
|
|||
|
"Q 353 888 353 1747 \n",
|
|||
|
"Q 353 2609 779 3096 \n",
|
|||
|
"Q 1206 3584 1959 3584 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-3a\" d=\"M 750 794 \n",
|
|||
|
"L 1409 794 \n",
|
|||
|
"L 1409 0 \n",
|
|||
|
"L 750 0 \n",
|
|||
|
"L 750 794 \n",
|
|||
|
"z\n",
|
|||
|
"M 750 3309 \n",
|
|||
|
"L 1409 3309 \n",
|
|||
|
"L 1409 2516 \n",
|
|||
|
"L 750 2516 \n",
|
|||
|
"L 750 3309 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-32\" d=\"M 1228 531 \n",
|
|||
|
"L 3431 531 \n",
|
|||
|
"L 3431 0 \n",
|
|||
|
"L 469 0 \n",
|
|||
|
"L 469 531 \n",
|
|||
|
"Q 828 903 1448 1529 \n",
|
|||
|
"Q 2069 2156 2228 2338 \n",
|
|||
|
"Q 2531 2678 2651 2914 \n",
|
|||
|
"Q 2772 3150 2772 3378 \n",
|
|||
|
"Q 2772 3750 2511 3984 \n",
|
|||
|
"Q 2250 4219 1831 4219 \n",
|
|||
|
"Q 1534 4219 1204 4116 \n",
|
|||
|
"Q 875 4013 500 3803 \n",
|
|||
|
"L 500 4441 \n",
|
|||
|
"Q 881 4594 1212 4672 \n",
|
|||
|
"Q 1544 4750 1819 4750 \n",
|
|||
|
"Q 2544 4750 2975 4387 \n",
|
|||
|
"Q 3406 4025 3406 3419 \n",
|
|||
|
"Q 3406 3131 3298 2873 \n",
|
|||
|
"Q 3191 2616 2906 2266 \n",
|
|||
|
"Q 2828 2175 2409 1742 \n",
|
|||
|
"Q 1991 1309 1228 531 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-39\" d=\"M 703 97 \n",
|
|||
|
"L 703 672 \n",
|
|||
|
"Q 941 559 1184 500 \n",
|
|||
|
"Q 1428 441 1663 441 \n",
|
|||
|
"Q 2288 441 2617 861 \n",
|
|||
|
"Q 2947 1281 2994 2138 \n",
|
|||
|
"Q 2813 1869 2534 1725 \n",
|
|||
|
"Q 2256 1581 1919 1581 \n",
|
|||
|
"Q 1219 1581 811 2004 \n",
|
|||
|
"Q 403 2428 403 3163 \n",
|
|||
|
"Q 403 3881 828 4315 \n",
|
|||
|
"Q 1253 4750 1959 4750 \n",
|
|||
|
"Q 2769 4750 3195 4129 \n",
|
|||
|
"Q 3622 3509 3622 2328 \n",
|
|||
|
"Q 3622 1225 3098 567 \n",
|
|||
|
"Q 2575 -91 1691 -91 \n",
|
|||
|
"Q 1453 -91 1209 -44 \n",
|
|||
|
"Q 966 3 703 97 \n",
|
|||
|
"z\n",
|
|||
|
"M 1959 2075 \n",
|
|||
|
"Q 2384 2075 2632 2365 \n",
|
|||
|
"Q 2881 2656 2881 3163 \n",
|
|||
|
"Q 2881 3666 2632 3958 \n",
|
|||
|
"Q 2384 4250 1959 4250 \n",
|
|||
|
"Q 1534 4250 1286 3958 \n",
|
|||
|
"Q 1038 3666 1038 3163 \n",
|
|||
|
"Q 1038 2656 1286 2365 \n",
|
|||
|
"Q 1534 2075 1959 2075 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-35\" d=\"M 691 4666 \n",
|
|||
|
"L 3169 4666 \n",
|
|||
|
"L 3169 4134 \n",
|
|||
|
"L 1269 4134 \n",
|
|||
|
"L 1269 2991 \n",
|
|||
|
"Q 1406 3038 1543 3061 \n",
|
|||
|
"Q 1681 3084 1819 3084 \n",
|
|||
|
"Q 2600 3084 3056 2656 \n",
|
|||
|
"Q 3513 2228 3513 1497 \n",
|
|||
|
"Q 3513 744 3044 326 \n",
|
|||
|
"Q 2575 -91 1722 -91 \n",
|
|||
|
"Q 1428 -91 1123 -41 \n",
|
|||
|
"Q 819 9 494 109 \n",
|
|||
|
"L 494 744 \n",
|
|||
|
"Q 775 591 1075 516 \n",
|
|||
|
"Q 1375 441 1709 441 \n",
|
|||
|
"Q 2250 441 2565 725 \n",
|
|||
|
"Q 2881 1009 2881 1497 \n",
|
|||
|
"Q 2881 1984 2565 2268 \n",
|
|||
|
"Q 2250 2553 1709 2553 \n",
|
|||
|
"Q 1456 2553 1204 2497 \n",
|
|||
|
"Q 953 2441 691 2322 \n",
|
|||
|
"L 691 4666 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-2e\" d=\"M 684 794 \n",
|
|||
|
"L 1344 794 \n",
|
|||
|
"L 1344 0 \n",
|
|||
|
"L 684 0 \n",
|
|||
|
"L 684 794 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-30\" d=\"M 2034 4250 \n",
|
|||
|
"Q 1547 4250 1301 3770 \n",
|
|||
|
"Q 1056 3291 1056 2328 \n",
|
|||
|
"Q 1056 1369 1301 889 \n",
|
|||
|
"Q 1547 409 2034 409 \n",
|
|||
|
"Q 2525 409 2770 889 \n",
|
|||
|
"Q 3016 1369 3016 2328 \n",
|
|||
|
"Q 3016 3291 2770 3770 \n",
|
|||
|
"Q 2525 4250 2034 4250 \n",
|
|||
|
"z\n",
|
|||
|
"M 2034 4750 \n",
|
|||
|
"Q 2819 4750 3233 4129 \n",
|
|||
|
"Q 3647 3509 3647 2328 \n",
|
|||
|
"Q 3647 1150 3233 529 \n",
|
|||
|
"Q 2819 -91 2034 -91 \n",
|
|||
|
"Q 1250 -91 836 529 \n",
|
|||
|
"Q 422 1150 422 2328 \n",
|
|||
|
"Q 422 3509 836 4129 \n",
|
|||
|
"Q 1250 4750 2034 4750 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-4d\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-61\" x=\"86.279297\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"147.558594\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6b\" x=\"199.658203\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-65\" x=\"253.943359\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-64\" x=\"315.466797\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"378.943359\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-2d\" x=\"410.730469\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"446.814453\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-4c\" x=\"478.601562\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"532.564453\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"593.746094\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"645.845703\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-3a\" x=\"697.945312\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"731.636719\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-32\" x=\"763.423828\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-39\" x=\"827.046875\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-35\" x=\"890.669922\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-2e\" x=\"954.292969\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-32\" x=\"986.080078\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-30\" x=\"1049.703125\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <clipPath id=\"p419d777ff0\">\n",
|
|||
|
" <rect x=\"7.2\" y=\"22.318125\" width=\"215.6\" height=\"110.88\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" </defs>\n",
|
|||
|
"</svg>\n"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 400x200 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"def compare_imgs(img1, img2, title_prefix=\"\"):\n",
|
|||
|
" # Calculate MSE loss between both images\n",
|
|||
|
" loss = F.mse_loss(img1, img2, reduction=\"sum\")\n",
|
|||
|
" # Plot images for visual comparison\n",
|
|||
|
" grid = torchvision.utils.make_grid(torch.stack([img1, img2], dim=0), nrow=2, normalize=True)\n",
|
|||
|
" grid = grid.permute(1, 2, 0)\n",
|
|||
|
" plt.figure(figsize=(4,2))\n",
|
|||
|
" plt.title(f\"{title_prefix} Loss: {loss.item():4.2f}\")\n",
|
|||
|
" plt.imshow(grid)\n",
|
|||
|
" plt.axis('off')\n",
|
|||
|
" plt.show()\n",
|
|||
|
"\n",
|
|||
|
"for i in range(2):\n",
|
|||
|
" # Load example image\n",
|
|||
|
" img, _ = train_dataset[i]\n",
|
|||
|
" img_mean = img.mean(dim=[1,2], keepdims=True)\n",
|
|||
|
"\n",
|
|||
|
" # Shift image by one pixel\n",
|
|||
|
" SHIFT = 1\n",
|
|||
|
" img_shifted = torch.roll(img, shifts=SHIFT, dims=1)\n",
|
|||
|
" img_shifted = torch.roll(img_shifted, shifts=SHIFT, dims=2)\n",
|
|||
|
" img_shifted[:,:1,:] = img_mean\n",
|
|||
|
" img_shifted[:,:,:1] = img_mean\n",
|
|||
|
" compare_imgs(img, img_shifted, \"Shifted -\")\n",
|
|||
|
"\n",
|
|||
|
" # Set half of the image to zero\n",
|
|||
|
" img_masked = img.clone()\n",
|
|||
|
" img_masked[:,:img_masked.shape[1]//2,:] = img_mean\n",
|
|||
|
" compare_imgs(img, img_masked, \"Masked -\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "Pwn3hj6hnq3z"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Task2\n",
|
|||
|
"Add training code to train the AutoEncoder"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 337,
|
|||
|
"referenced_widgets": [
|
|||
|
"1c5e517cebbc4d96b4d260676eca961f",
|
|||
|
"20f188a8bf53479983bdf9c2df2a55e0",
|
|||
|
"6e196069369c4126acdc53ac6da328aa",
|
|||
|
"f3b39579ce11475ea2ca67198c64f66a",
|
|||
|
"b15d030dacc84d3d89a38d3f48c094e7",
|
|||
|
"f0a2ddf4f8a54ccd8e301b54943bb88c",
|
|||
|
"d9164be3d674410da5eee962bc243727",
|
|||
|
"ba9e7a3a9bbb46faaabdcc944650f4af",
|
|||
|
"a4c68ce78f024f9aa4bd2fe3ac296d25",
|
|||
|
"20a2d55104cc4a98a06c5bf50a80b51c",
|
|||
|
"94ea667c7972465e8166c8747ef24d94",
|
|||
|
"35a4be6db57c4ae2b36604feae29d861",
|
|||
|
"6cc313af7666494794ee75d95aff9289",
|
|||
|
"9152e497a92b4ef1b33612cfd628f739",
|
|||
|
"29bed95021784427be407f74be7daff0",
|
|||
|
"323712cc4b21465f894dbb2ab3960178",
|
|||
|
"9f4caca2a12a4e64998d8e4977e2d038",
|
|||
|
"be92dee7c4dc46edb88c555550f9ae37",
|
|||
|
"680ba64a00484feba87714c8ac2b2f1e",
|
|||
|
"38c1e5f53c674dffb84d117171fc2563",
|
|||
|
"9387e448cba046bb913d9d60ceefe363",
|
|||
|
"ee038165676342fd952cc958de73697f",
|
|||
|
"78274c291a2044a196f5ea743d2853a7",
|
|||
|
"1c1872a626dd4856a621bbc425c4a947",
|
|||
|
"6f1de415698948e2b4747e34f36684a4",
|
|||
|
"529be14dea3e41d89f80b7dcb6347f22",
|
|||
|
"a3fc766655ce445dabb70df3fe051df0",
|
|||
|
"27587b51d0694c67b0465a4929911cd6",
|
|||
|
"1e0d7aa70cf4490d97ad44009f6105c5",
|
|||
|
"c9d3591403d242dab30233318dd592ea",
|
|||
|
"126c0bb014d84c3abf231605148a8353",
|
|||
|
"24729235af21409696bed8f0b01e5127",
|
|||
|
"047ea2ea246342f18a2d70390099c0f5",
|
|||
|
"caf7a900394c4705bc30d3cdecb0e24d",
|
|||
|
"ea89a8bbbf8d43f19fcf91ff8935ec84",
|
|||
|
"a0091f5723714384a05b0c27c489ff1b",
|
|||
|
"baf572d365b74d8e81eb468b66e6b045",
|
|||
|
"c5fac4f1cbf64dd08351ea32fb4b4a59",
|
|||
|
"72a4a60175c34a6680df47c0e1002d90",
|
|||
|
"c9b3bccd02ee402c99c5c10e6c03530d",
|
|||
|
"e3806093ea654edcac0e153bd7ccdf9e",
|
|||
|
"1f6e9b83a8744173a162f479dd04dc6f",
|
|||
|
"d918542d0318488c88829bc650b6b8cc",
|
|||
|
"fcb5fce90c82415589f58057fc51812b",
|
|||
|
"223a29e7d81049debc22a75a4027e113",
|
|||
|
"96ddd57e6ccf4e9a82a6575b4a9843f1",
|
|||
|
"ef976e12f2144286af54f4ee339c08de",
|
|||
|
"8da43c5164f64e7d8bb645099e1ee3e6",
|
|||
|
"3d98aea664c645089d693365d784a580",
|
|||
|
"ec552968d3f64c57b2f854f118dd234b",
|
|||
|
"7913abef7f9147e19c39b54878f1d73e",
|
|||
|
"4f882fc7f8054471855b77b116fd566b",
|
|||
|
"b4f60946184f439ba90f79cda27aa34a",
|
|||
|
"2189d23f386a4c00ae11995e974569eb",
|
|||
|
"2805a35efa4a401ea88c3a22dd9752f5",
|
|||
|
"bcc33f1b00f14139b3719c2f7a622960",
|
|||
|
"45fead35e2114df598508e5694f62bef",
|
|||
|
"f892714895654834a2bd95d04f2aff67",
|
|||
|
"b6a804a7415c41a19cfdd2b3af153629",
|
|||
|
"d64e3edbe0914733b7a27f35a71bc9c8",
|
|||
|
"a5da50968aae432aa5b3c90c8e7ddb04",
|
|||
|
"95c22c37f1b04034b4132ea248af2e94",
|
|||
|
"93eb82f2191a4e42887695889f30a503",
|
|||
|
"a3e241c8ed1449aa9e3adce6f9fa69bf",
|
|||
|
"1a6a711d2b5e4ea7a8c769c36e194335",
|
|||
|
"53dac5aeffcb41d388da7f4aaf5e19b9",
|
|||
|
"1fc700d2efc1488b84cc18c540f6e497",
|
|||
|
"8afa3c2d298b40c9be0312768d98fd7c",
|
|||
|
"948e95b9112b4e31945e509c68ab8ec9",
|
|||
|
"381466138eaa45278002150b1219293f",
|
|||
|
"2a516ab4e8c247599fb7faf9ec95f676",
|
|||
|
"e33d1e0e7cb646aa8803b7338f6da888",
|
|||
|
"1de75ad1a9e740c18f8cf2ed2cd5955b",
|
|||
|
"471be6fd1d8c4925a5ed4d2a9ec7673c",
|
|||
|
"0c29f121e84a44608393ade2b1381116",
|
|||
|
"0c60f13e34d14fef9d0bbf6d7ded673a",
|
|||
|
"2434f5e02bdf4fc78c88d4c146ff6ae7",
|
|||
|
"6599dc2951474e4282ff1894ec0851e8",
|
|||
|
"b61d6e41157e43ee99f40d8b018877c4",
|
|||
|
"2f347bd02cb944ccad43744dd7e4eeea",
|
|||
|
"94f52e75bcfe48a2a51fbaf59c22352c",
|
|||
|
"0c3bdf21300f4610a68d9dbfa566a1fd",
|
|||
|
"8e950e1ea7d047618f38b6619a6312e1",
|
|||
|
"5a0653f04c624aed8ba9af0eaad8b0fd",
|
|||
|
"cdd01d42b3d24f99b390b8a8fbf8dcf7",
|
|||
|
"6c39e034913845b797600de2fafe98aa",
|
|||
|
"8dffad816bec4292a338af6c8b3a1e5d",
|
|||
|
"9b2657e17fca494aa30a07f515e1d35d",
|
|||
|
"4d5f2b6c66904e7bb2f49f7b39174de4",
|
|||
|
"f5fbf0c6280c41b59e7f48e05afe8d20",
|
|||
|
"c05fd736bc514fd4810efe5b3eaa9c55",
|
|||
|
"3e6f882231d2445cbad2dc940eb1c056",
|
|||
|
"828eeb2e8ab346a297928bbea0eec155",
|
|||
|
"297cbe85fb7041cf94532a565e83397b",
|
|||
|
"13477a6d079a45c8b340cfe7f18df03d",
|
|||
|
"48d4a0722e9d42398e3ae796f44170e8",
|
|||
|
"bb28b9a67e63424ba4203d4a44de8dd4",
|
|||
|
"851361f7fb4f4db6a4a165b21d627af3",
|
|||
|
"0f00ffdd775042aa8860456d5b3440a2",
|
|||
|
"177d3c0836c14df986e732b5331825d6",
|
|||
|
"d1c852ac83ca466b839620a2d362d587",
|
|||
|
"2eb19f9206bf48809789b6eb15723c10",
|
|||
|
"855c15c10a2844b29c036c2ce58c866a",
|
|||
|
"070c3ed170534dcaa3da118dccc78aa5",
|
|||
|
"c8a81fdd7aa143e9a7bb54d490cb105e",
|
|||
|
"c0da3b83a124493fa8364441caa4cf00",
|
|||
|
"581562b79aac46fb947d61130897e232",
|
|||
|
"aaa0adc4eefd49c1a96055eae215d7eb",
|
|||
|
"d2946fea7b7d42fa98ec040769478597",
|
|||
|
"96b3a74edb9b4400bf9c1fe1b7010f03"
|
|||
|
]
|
|||
|
},
|
|||
|
"id": "dnD8g-r8KB0K",
|
|||
|
"outputId": "de2a26d7-50cd-44a2-fdb9-3e3952aa68c8"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"ename": "NameError",
|
|||
|
"evalue": "name 'Autoencoder' is not defined",
|
|||
|
"output_type": "error",
|
|||
|
"traceback": [
|
|||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
|||
|
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|||
|
"Cell \u001b[0;32mIn[2], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# for batch in tqdm(train_loader, total=len(train_loader)):\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01moptim\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01moptim\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mAutoencoder\u001b[49m(\u001b[38;5;241m64\u001b[39m, \u001b[38;5;241m128\u001b[39m, ) \u001b[38;5;66;03m# you code here\u001b[39;00m\n\u001b[1;32m 5\u001b[0m model\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m 6\u001b[0m optimizer \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39moptim\u001b[38;5;241m.\u001b[39mAdam(model\u001b[38;5;241m.\u001b[39mparameters(), lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1e-3\u001b[39m) \u001b[38;5;66;03m# your code here\u001b[39;00m\n",
|
|||
|
"\u001b[0;31mNameError\u001b[0m: name 'Autoencoder' is not defined"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# for batch in tqdm(train_loader, total=len(train_loader)):\n",
|
|||
|
"import torch.optim as optim\n",
|
|||
|
"\n",
|
|||
|
"model = Autoencoder(64, 128, ) # you code here\n",
|
|||
|
"model.to(device)\n",
|
|||
|
"optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) # your code here\n",
|
|||
|
"scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min') # your code here, can use ReduceLROnPlateau\n",
|
|||
|
"# Write training loop here\n",
|
|||
|
"\n",
|
|||
|
"loss_fn = nn.MSELoss()\n",
|
|||
|
"\n",
|
|||
|
"n_epoch = 40\n",
|
|||
|
"model.train()\n",
|
|||
|
"for epoch in range(n_epoch):\n",
|
|||
|
" print(f\"\\nEpoch {epoch}:\")\n",
|
|||
|
"\n",
|
|||
|
" avg_loss = 0\n",
|
|||
|
"\n",
|
|||
|
" for i, data in enumerate(train_loader):\n",
|
|||
|
" inputs, _ = data\n",
|
|||
|
"\n",
|
|||
|
" inputs = inputs.cuda()\n",
|
|||
|
"\n",
|
|||
|
" loss = model._get_reconstruction_loss(inputs) #loss_fn(outputs, inputs)\n",
|
|||
|
"\n",
|
|||
|
" optimizer.zero_grad()\n",
|
|||
|
"\n",
|
|||
|
" loss.backward()\n",
|
|||
|
"\n",
|
|||
|
" optimizer.step()\n",
|
|||
|
"\n",
|
|||
|
" avg_loss += loss\n",
|
|||
|
"\n",
|
|||
|
" print(f'\\rBatch: {i}: Loss:{loss} avg_Loss: {avg_loss/(i + 1)} ', end='')\n",
|
|||
|
"\n",
|
|||
|
" scheduler.step(loss)\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 144,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 324
|
|||
|
},
|
|||
|
"id": "5OfaUMh-U3eJ",
|
|||
|
"outputId": "bd25e0cd-7c0e-40fe-c472-527750e268cc"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzQ1LjQ0MDc2OTIzMDggMjc5LjAwNSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUiA+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxVT8tOw0AMvPsr5tgc2Hg3m8ceKYUIbi2ROFSckk0gaholKfT3cVcIWksjefwYj+ON//6s/a5c4+GV4n9WL6TRCzowesEZGqWgIxY2UGJTZS3nmRN6uKYmd4o5lSJf5R9ELU3IlQlIEq04zJuECxjrlC0we7zhiPhe7ixyrBecRb/ErbUp7BtcrFxWC/snXA+InzU2I7a0xSQD3Y2QcJrkL8YdS9EZ5VKbpy7TqYXJjMoK0aB1RfGThjao2vBx1dAeq10Ea5XJuUhCYOXr8bic5q/65Bu0cwTD6rcZ+uOAYWz8IcI7qhd6rEh80Q/ZEVSgCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMjQzCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QS3IEIQxD95xCRwB/4TydSs2i5/7byO6ZbJCqwPITcRwTZ/OICKQc/KxhZlATvIeFQ9VgO6DrwGdATuAaLnQpcKPahHN8ncObCpq4h8dstUisneVMIeowJkls6EnINs5ocuOc3KpU3kxrvcbim3J3u8pr2pbCvYfK+jjjVDmrKmuRNhGZRWsbwUYe7LDPo6toy1kq3DeMTV0TlcObxe5Z3cniiu+vXOPVLMHM98O3vxwfV93oKsfYyoTZUpPm0jn1r5bR+nC0i4V64Ud7JkhwdasgVaXWztpTev1T3CT6/QP0wVcdCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMTM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2PQQ4DMQgD73mFn0AgQHjPVlUP2/9fS9h20wseyYBsUQaBJYd4hxvh0dsP30U2FWfjnF9SKWIhmE9wnzBTHI0pd/Jjj4BxlGosp2h4XkvOTcMXLXcTLaWtl5MZb7jul/dHlW2RDUXPLQtC12yS+TKBB3wYmEd142mlx932bK/2/ADObDRJCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vv
|
|||
|
"image/svg+xml": [
|
|||
|
"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n",
|
|||
|
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
|
|||
|
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
|
|||
|
"<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"345.440769pt\" height=\"278.998125pt\" viewBox=\"0 0 345.440769 278.998125\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n",
|
|||
|
" <metadata>\n",
|
|||
|
" <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n",
|
|||
|
" <cc:Work>\n",
|
|||
|
" <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
|
|||
|
" <dc:date>2024-02-20T16:37:03.453161</dc:date>\n",
|
|||
|
" <dc:format>image/svg+xml</dc:format>\n",
|
|||
|
" <dc:creator>\n",
|
|||
|
" <cc:Agent>\n",
|
|||
|
" <dc:title>Matplotlib v3.8.2, https://matplotlib.org/</dc:title>\n",
|
|||
|
" </cc:Agent>\n",
|
|||
|
" </dc:creator>\n",
|
|||
|
" </cc:Work>\n",
|
|||
|
" </rdf:RDF>\n",
|
|||
|
" </metadata>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <g id=\"figure_1\">\n",
|
|||
|
" <g id=\"patch_1\">\n",
|
|||
|
" <path d=\"M 0 278.998125 \n",
|
|||
|
"L 345.440769 278.998125 \n",
|
|||
|
"L 345.440769 0 \n",
|
|||
|
"L 0 0 \n",
|
|||
|
"z\n",
|
|||
|
"\" style=\"fill: #ffffff\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_1\">\n",
|
|||
|
" <g clip-path=\"url(#pedee96d3df)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAAcwAAAFbCAYAAABYuL59AACrJ0lEQVR4nO39V6x1W3Ymhs2Vd9775PCfP8eb6t5biRVYRbLZjC22WrSENgxJhmQ4yDBgN+wHA4YfDNgPggHBDzagYKGFVgsSKJFNdpHNYqpMVtVNdevme/8cTk47772yH4pc4xvjnL252C7LtHt8T3OfPfdcc820zvrGGN+wjDG5USgUCoVCMRf2/7c7oFAoFArF/y9AH5gKhUKhUJSAPjAVCoVCoSgBfWAqFAqFQlEC+sBUKBQKhaIE9IGpUCgUCkUJuPO+/MW/9/eLsmVZVM5TVs+xKDIlCAKqZ/PncQofPd8rylmWiU7Rdyaj67ou726e03VtuJZtW6yeZdlQhvvg1UyW5efWS9NU1KP+xklclKMs4fXgdwmUnZxfOEvod3hP8n4TqIf3+4df+10zC//6P/yHRTmNef9yuI8MruvZPNKIjXOO3/F5wz7l8J1jOaye79BntzJ7veA8svl1eHuWTZ8zWC9xyvuHyzaNad5ScR84PVZGPxpHU1YvS3EeqSyWs4njFMowfhYf52//8dfMeRj/X3+TfU4jmkcL50Oul/GQfnNyUpTzXKzToFaUd7o0Lq+//5TVu7ffL8r7I6p3mvD1PM1oPkLoXiz2B44zzqkr5xfKHuxRV4xz3aFzI4A1Fzi8Ysulfqx41HrL49etehmU6e+BK+r5tDZ//QcnZhae/p8+U5Q97JMVsHpOCvNrw6INeXvhkP6Qu5Wi3B3xcX78gNbBW7uDovxgb8LqnUY0p1NYp7GIPLRgDrBLnuHIYTu77O98n1fho+PSh5bL11U1oHFfrVDZD/i6bzj0uwq0h20bY4wF68yuVovy/+RP7plZ0DdMhUKhUChKQB+YCoVCoVCUwFxK1rKQoqS/Ow5/znrwio10ZSXgVIPPqAx4zRftWcBWeB51EWlcY4yJgEJwHMGvMtC1ckancuoijqKinOVULxH1kCRCunYK9KwxnNZFJJIqhD75vv/X/t6YszT2LCDVdfYn9AcXypagKHF+cxgXW3YPqFwro3lLz1BxNn6A9sRyhGulMGZSmspO6S8R0J9RzOcjNzQWSQJt58Ik4NE68xyaj0BwTpmL64DuMQp5e0gTZ0DxYnkuBBVsYhgL7Ltoz4H1mBvqXyYoz90xlX//7e2i/KMnnF48hPuazqDljDEmg/WTwf/kYtkbG9dciuaV2Wsbt7krFkIV1lIdKjbFQs1ToH/hsHHEdS2grj2b1majyhdCrSrJyPPh2tSek+JeiVg9C9apDbR/OuE3bI+pveODXlH+8PGI1fuDZ0TD/mhI1+on/H4dNL1gv8U443DiShIMqnHg/MImfIuv0xAadBPYy+JM7wBNjOPXjsS8wXPGhjaqVb7uHQeeCw6fg1nQN0yFQqFQKEpAH5gKhUKhUJTAXErWB08kG16vbcNflZFCdZzzf2OMYZwM0o1n6gHNZOVEK8UT/tqcAOUWoifrmebo1RupzCQVVCvwBuiVKSnoAGhTpNvkfcTglYrXtQQlhl5jyQyPWWME/RtKIux85EBd5MLbl40zDJr0JvPAC9W2z6c7/qqVogRz7Xicms9gnFxoQ45zDu2NxkAzRbxeAuM8npDn32TEvQBdjzwJpyGtpXHE69UqVM+rUd8Fc2tSoPBjoCuFE7nBVWvbuOX4OpiFTJgE0MOXOdpmgjuL6coJfDe2fFbtO+/tFOU//uiwKG9nfH6nQJnbQFdKCt/JkLZHb1BBiQGFiutPni+4DyIL1yxHCH0aw5dRzNcLLp8caOyaJ/Y5XCGCsbAcfmxWKlVTBpZN6wpp5zTnlK5tqE8p0I1ZwMd5tE3j8viQ1vDvPRmwem8ADTvAfZlL4wZSqHBuiFoeOnqjeUrUw97i0TiVDaJ1Ds9qcZ4iY+7BlrCEVz86i/twvjR8V9SjcXcrfE/Mgr5hKhQKhUJRAvrAVCgUCoWiBPSBqVAoFApFCfw1YSXESjMVlkzaGM5XZEkTzmrnYItBNY9UcNV5Qpw7qrAkQqkmxTgJdImWSiHQPFO7EUYpDF2IwbYxHHI37cGAbASuS9z3YMTDGNCehkR9Im2T0A8MMZH3MU/NaBZScB3P5HwwlRhUcuJt2C7Z8dBVXNo6q+DOHYY0FrYnFGhiCpNA81w04eETwxEplAwHVI6EO/x0Qvbc0RDUbSxeb239QlGewG92driiTQrjUgV7pu2IeQMzcsbswfx+bTCquGDP9avlbF+ZCI+JpzROHqyRXIbvQDiKBeExuwNe7zimNmKwx/VDvl4SsFIFMAc1YbyqwRoJMCTJ4bY6tN2jT4Pninq4P1Iai0SsZ9xHCdQbWyJsDd4TArB/xdKkDOs5qNaLcr3ZZNWCytxjFK4LIUX4hTjX2HdMnUrY7sE+d9Kn+30c8vZ64MeAIxuIcXGZ3RLGSFgx+exQH3wZVoLtQRPhHNtkBodPKq47hpEJoIk84/fhwDqow/4IPN7zhRYpXJkW97OYBX3DVCgUCoWiBPSBqVAoFApFCczlEvIcRaORG+D1HGgmnuXybowxQKHESNkJ6jGJSHokS4GenSOCjq/8ScQpiQFQeyGEY8QxD1NBChnr1QR1dvXataL8+htvFuVun1OK6HKN9KekGviPZlOtKDJeqdVm1kNMgRbOBJWJXv4xjFksqBoMwUgjGhfBtBrXJlpjnNJYTMc8BCaZ4HfU9iTk4zeBvie4/ixOraQQeoQhF7Zw/3/u+VtF+fLielF++PATVm/QJ8q9b80Jk5oh5O843EXdhYFyfaJ4A6EMNQuOTCYAnzFkSiobYVIE1Ik/GPF1f+VTLxXl5dH7RfnRgyes3gJs/AWg49tCtLwO6x615g/FvsTZxjtMbH4fKNZfh1CcseEYwSRESKuLcAI0Z2RwT7YgGzsNol6XFxvwd16vFZQLD7KBkrbgFnNHnGtwPmQR9TWMhUJORNe1arSufJeHSVWB88QwuECEhVXgurieKyJZhAuzVUNTk4wihLnPLRxzIeYO5cicv6dkeyAIZMYi3As0880YzVh1oTzXpjPUbjZMGegbpkKhUCgUJaAPTIVCoVAoSmAuJevA89QBOnAy5l6jwykJ/9pA53VPuqxeMiVKJoH360QolGQ5KJTEROelUiwdKIoMuB9J3YYhiqoDHSW8ZG2gHgJQ2v6H/9a/xer9wi/8QlH+T/+z/7wof+0Pv87quUAfOUwRQyiPoFgw0HeBECN3wCPXCYgumgxm5+BDivyMV+EE8t9NieASDDkTxu6dkhJMKLz78B4ToBtjQSWhmhGj1VO+DmYRN1wth9PxEbiuooerMcZ8+jM/U5RfuE307Fsfvs3qDXqU9zEFb+n0jLclUFiwP1Do3BieaxSF9x23HJVnhCh40CCPzXRE85bHYsQgT+DwmMwSR33ev9rN1aLc3KD5bd99xOp9EbwMm5CnEdW4jOHC+yeQGzMS1PICjKfMEYuwmZcnKBbZYl3BOCNNt9Dg68WHYUe9+t5UHIdeqyg2Fsgs06rw8Wv55cTXMd8unj1ZxMcvmYK3PgiuRxMh6g9nxeZapyi/fMTbO43oJpHCb4m8lHXwAsfZ8MX5jN6vCeYrnkO1okkgk0pOrG24ruBk8XzxkbqVAlewXqYRRiAIajmg89Stq9KPQqFQKBQ/NegDU6FQKBSKEtAHpkKhUCgUJTDXhnl8fFyUMQPDZMwduiegroL2qaXFJVbv8VPKijCA38iwEuTZ0R4ZywTNwH6jvdUSHDnLhIDqRUYAbCCdFtkvvvylL7Nqy3BfLzz/XFH+F3/EbZiolG+B/TAX6Sw8cDd3wXZac7kb9OoGKdVYHtlUuof35J0UYOonwuYYgt1yApk3mnUestIEJf+9COaw22f1bJYw9vyk4sbw7BYuqr2IvlvW+UowIqmJSVAdCVrxqtyGeenG9aL83J07VH7+eVbv0cOH57adSVs72jAxG80ZGw18hnvK59jt+IWEgg/YDJMJ7aOKsBUbi+bxCWSJnibchb4TkE3UgdCgjsvtOsuwTT1Q45LKVWhzbMNceT7f5y7sA7TzyvTRGEaDY1ETSlN
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"text_1\">\n",
|
|||
|
" <!-- Reconstructed from model -->\n",
|
|||
|
" <g transform=\"translate(93.00101 16.318125) scale(0.12 -0.12)\">\n",
|
|||
|
" <defs>\n",
|
|||
|
" <path id=\"DejaVuSans-52\" d=\"M 2841 2188 \n",
|
|||
|
"Q 3044 2119 3236 1894 \n",
|
|||
|
"Q 3428 1669 3622 1275 \n",
|
|||
|
"L 4263 0 \n",
|
|||
|
"L 3584 0 \n",
|
|||
|
"L 2988 1197 \n",
|
|||
|
"Q 2756 1666 2539 1819 \n",
|
|||
|
"Q 2322 1972 1947 1972 \n",
|
|||
|
"L 1259 1972 \n",
|
|||
|
"L 1259 0 \n",
|
|||
|
"L 628 0 \n",
|
|||
|
"L 628 4666 \n",
|
|||
|
"L 2053 4666 \n",
|
|||
|
"Q 2853 4666 3247 4331 \n",
|
|||
|
"Q 3641 3997 3641 3322 \n",
|
|||
|
"Q 3641 2881 3436 2590 \n",
|
|||
|
"Q 3231 2300 2841 2188 \n",
|
|||
|
"z\n",
|
|||
|
"M 1259 4147 \n",
|
|||
|
"L 1259 2491 \n",
|
|||
|
"L 2053 2491 \n",
|
|||
|
"Q 2509 2491 2742 2702 \n",
|
|||
|
"Q 2975 2913 2975 3322 \n",
|
|||
|
"Q 2975 3731 2742 3939 \n",
|
|||
|
"Q 2509 4147 2053 4147 \n",
|
|||
|
"L 1259 4147 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n",
|
|||
|
"L 3597 1613 \n",
|
|||
|
"L 953 1613 \n",
|
|||
|
"Q 991 1019 1311 708 \n",
|
|||
|
"Q 1631 397 2203 397 \n",
|
|||
|
"Q 2534 397 2845 478 \n",
|
|||
|
"Q 3156 559 3463 722 \n",
|
|||
|
"L 3463 178 \n",
|
|||
|
"Q 3153 47 2828 -22 \n",
|
|||
|
"Q 2503 -91 2169 -91 \n",
|
|||
|
"Q 1331 -91 842 396 \n",
|
|||
|
"Q 353 884 353 1716 \n",
|
|||
|
"Q 353 2575 817 3079 \n",
|
|||
|
"Q 1281 3584 2069 3584 \n",
|
|||
|
"Q 2775 3584 3186 3129 \n",
|
|||
|
"Q 3597 2675 3597 1894 \n",
|
|||
|
"z\n",
|
|||
|
"M 3022 2063 \n",
|
|||
|
"Q 3016 2534 2758 2815 \n",
|
|||
|
"Q 2500 3097 2075 3097 \n",
|
|||
|
"Q 1594 3097 1305 2825 \n",
|
|||
|
"Q 1016 2553 972 2059 \n",
|
|||
|
"L 3022 2063 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-63\" d=\"M 3122 3366 \n",
|
|||
|
"L 3122 2828 \n",
|
|||
|
"Q 2878 2963 2633 3030 \n",
|
|||
|
"Q 2388 3097 2138 3097 \n",
|
|||
|
"Q 1578 3097 1268 2742 \n",
|
|||
|
"Q 959 2388 959 1747 \n",
|
|||
|
"Q 959 1106 1268 751 \n",
|
|||
|
"Q 1578 397 2138 397 \n",
|
|||
|
"Q 2388 397 2633 464 \n",
|
|||
|
"Q 2878 531 3122 666 \n",
|
|||
|
"L 3122 134 \n",
|
|||
|
"Q 2881 22 2623 -34 \n",
|
|||
|
"Q 2366 -91 2075 -91 \n",
|
|||
|
"Q 1284 -91 818 406 \n",
|
|||
|
"Q 353 903 353 1747 \n",
|
|||
|
"Q 353 2603 823 3093 \n",
|
|||
|
"Q 1294 3584 2113 3584 \n",
|
|||
|
"Q 2378 3584 2631 3529 \n",
|
|||
|
"Q 2884 3475 3122 3366 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n",
|
|||
|
"Q 1497 3097 1228 2736 \n",
|
|||
|
"Q 959 2375 959 1747 \n",
|
|||
|
"Q 959 1119 1226 758 \n",
|
|||
|
"Q 1494 397 1959 397 \n",
|
|||
|
"Q 2419 397 2687 759 \n",
|
|||
|
"Q 2956 1122 2956 1747 \n",
|
|||
|
"Q 2956 2369 2687 2733 \n",
|
|||
|
"Q 2419 3097 1959 3097 \n",
|
|||
|
"z\n",
|
|||
|
"M 1959 3584 \n",
|
|||
|
"Q 2709 3584 3137 3096 \n",
|
|||
|
"Q 3566 2609 3566 1747 \n",
|
|||
|
"Q 3566 888 3137 398 \n",
|
|||
|
"Q 2709 -91 1959 -91 \n",
|
|||
|
"Q 1206 -91 779 398 \n",
|
|||
|
"Q 353 888 353 1747 \n",
|
|||
|
"Q 353 2609 779 3096 \n",
|
|||
|
"Q 1206 3584 1959 3584 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n",
|
|||
|
"L 3513 0 \n",
|
|||
|
"L 2938 0 \n",
|
|||
|
"L 2938 2094 \n",
|
|||
|
"Q 2938 2591 2744 2837 \n",
|
|||
|
"Q 2550 3084 2163 3084 \n",
|
|||
|
"Q 1697 3084 1428 2787 \n",
|
|||
|
"Q 1159 2491 1159 1978 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 3500 \n",
|
|||
|
"L 1159 3500 \n",
|
|||
|
"L 1159 2956 \n",
|
|||
|
"Q 1366 3272 1645 3428 \n",
|
|||
|
"Q 1925 3584 2291 3584 \n",
|
|||
|
"Q 2894 3584 3203 3211 \n",
|
|||
|
"Q 3513 2838 3513 2113 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n",
|
|||
|
"L 2834 2853 \n",
|
|||
|
"Q 2591 2978 2328 3040 \n",
|
|||
|
"Q 2066 3103 1784 3103 \n",
|
|||
|
"Q 1356 3103 1142 2972 \n",
|
|||
|
"Q 928 2841 928 2578 \n",
|
|||
|
"Q 928 2378 1081 2264 \n",
|
|||
|
"Q 1234 2150 1697 2047 \n",
|
|||
|
"L 1894 2003 \n",
|
|||
|
"Q 2506 1872 2764 1633 \n",
|
|||
|
"Q 3022 1394 3022 966 \n",
|
|||
|
"Q 3022 478 2636 193 \n",
|
|||
|
"Q 2250 -91 1575 -91 \n",
|
|||
|
"Q 1294 -91 989 -36 \n",
|
|||
|
"Q 684 19 347 128 \n",
|
|||
|
"L 347 722 \n",
|
|||
|
"Q 666 556 975 473 \n",
|
|||
|
"Q 1284 391 1588 391 \n",
|
|||
|
"Q 1994 391 2212 530 \n",
|
|||
|
"Q 2431 669 2431 922 \n",
|
|||
|
"Q 2431 1156 2273 1281 \n",
|
|||
|
"Q 2116 1406 1581 1522 \n",
|
|||
|
"L 1381 1569 \n",
|
|||
|
"Q 847 1681 609 1914 \n",
|
|||
|
"Q 372 2147 372 2553 \n",
|
|||
|
"Q 372 3047 722 3315 \n",
|
|||
|
"Q 1072 3584 1716 3584 \n",
|
|||
|
"Q 2034 3584 2315 3537 \n",
|
|||
|
"Q 2597 3491 2834 3397 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n",
|
|||
|
"L 1172 3500 \n",
|
|||
|
"L 2356 3500 \n",
|
|||
|
"L 2356 3053 \n",
|
|||
|
"L 1172 3053 \n",
|
|||
|
"L 1172 1153 \n",
|
|||
|
"Q 1172 725 1289 603 \n",
|
|||
|
"Q 1406 481 1766 481 \n",
|
|||
|
"L 2356 481 \n",
|
|||
|
"L 2356 0 \n",
|
|||
|
"L 1766 0 \n",
|
|||
|
"Q 1100 0 847 248 \n",
|
|||
|
"Q 594 497 594 1153 \n",
|
|||
|
"L 594 3053 \n",
|
|||
|
"L 172 3053 \n",
|
|||
|
"L 172 3500 \n",
|
|||
|
"L 594 3500 \n",
|
|||
|
"L 594 4494 \n",
|
|||
|
"L 1172 4494 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n",
|
|||
|
"Q 2534 3019 2420 3045 \n",
|
|||
|
"Q 2306 3072 2169 3072 \n",
|
|||
|
"Q 1681 3072 1420 2755 \n",
|
|||
|
"Q 1159 2438 1159 1844 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 3500 \n",
|
|||
|
"L 1159 3500 \n",
|
|||
|
"L 1159 2956 \n",
|
|||
|
"Q 1341 3275 1631 3429 \n",
|
|||
|
"Q 1922 3584 2338 3584 \n",
|
|||
|
"Q 2397 3584 2469 3576 \n",
|
|||
|
"Q 2541 3569 2628 3553 \n",
|
|||
|
"L 2631 2963 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-75\" d=\"M 544 1381 \n",
|
|||
|
"L 544 3500 \n",
|
|||
|
"L 1119 3500 \n",
|
|||
|
"L 1119 1403 \n",
|
|||
|
"Q 1119 906 1312 657 \n",
|
|||
|
"Q 1506 409 1894 409 \n",
|
|||
|
"Q 2359 409 2629 706 \n",
|
|||
|
"Q 2900 1003 2900 1516 \n",
|
|||
|
"L 2900 3500 \n",
|
|||
|
"L 3475 3500 \n",
|
|||
|
"L 3475 0 \n",
|
|||
|
"L 2900 0 \n",
|
|||
|
"L 2900 538 \n",
|
|||
|
"Q 2691 219 2414 64 \n",
|
|||
|
"Q 2138 -91 1772 -91 \n",
|
|||
|
"Q 1169 -91 856 284 \n",
|
|||
|
"Q 544 659 544 1381 \n",
|
|||
|
"z\n",
|
|||
|
"M 1991 3584 \n",
|
|||
|
"L 1991 3584 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-64\" d=\"M 2906 2969 \n",
|
|||
|
"L 2906 4863 \n",
|
|||
|
"L 3481 4863 \n",
|
|||
|
"L 3481 0 \n",
|
|||
|
"L 2906 0 \n",
|
|||
|
"L 2906 525 \n",
|
|||
|
"Q 2725 213 2448 61 \n",
|
|||
|
"Q 2172 -91 1784 -91 \n",
|
|||
|
"Q 1150 -91 751 415 \n",
|
|||
|
"Q 353 922 353 1747 \n",
|
|||
|
"Q 353 2572 751 3078 \n",
|
|||
|
"Q 1150 3584 1784 3584 \n",
|
|||
|
"Q 2172 3584 2448 3432 \n",
|
|||
|
"Q 2725 3281 2906 2969 \n",
|
|||
|
"z\n",
|
|||
|
"M 947 1747 \n",
|
|||
|
"Q 947 1113 1208 752 \n",
|
|||
|
"Q 1469 391 1925 391 \n",
|
|||
|
"Q 2381 391 2643 752 \n",
|
|||
|
"Q 2906 1113 2906 1747 \n",
|
|||
|
"Q 2906 2381 2643 2742 \n",
|
|||
|
"Q 2381 3103 1925 3103 \n",
|
|||
|
"Q 1469 3103 1208 2742 \n",
|
|||
|
"Q 947 2381 947 1747 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-20\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-66\" d=\"M 2375 4863 \n",
|
|||
|
"L 2375 4384 \n",
|
|||
|
"L 1825 4384 \n",
|
|||
|
"Q 1516 4384 1395 4259 \n",
|
|||
|
"Q 1275 4134 1275 3809 \n",
|
|||
|
"L 1275 3500 \n",
|
|||
|
"L 2222 3500 \n",
|
|||
|
"L 2222 3053 \n",
|
|||
|
"L 1275 3053 \n",
|
|||
|
"L 1275 0 \n",
|
|||
|
"L 697 0 \n",
|
|||
|
"L 697 3053 \n",
|
|||
|
"L 147 3053 \n",
|
|||
|
"L 147 3500 \n",
|
|||
|
"L 697 3500 \n",
|
|||
|
"L 697 3744 \n",
|
|||
|
"Q 697 4328 969 4595 \n",
|
|||
|
"Q 1241 4863 1831 4863 \n",
|
|||
|
"L 2375 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6d\" d=\"M 3328 2828 \n",
|
|||
|
"Q 3544 3216 3844 3400 \n",
|
|||
|
"Q 4144 3584 4550 3584 \n",
|
|||
|
"Q 5097 3584 5394 3201 \n",
|
|||
|
"Q 5691 2819 5691 2113 \n",
|
|||
|
"L 5691 0 \n",
|
|||
|
"L 5113 0 \n",
|
|||
|
"L 5113 2094 \n",
|
|||
|
"Q 5113 2597 4934 2840 \n",
|
|||
|
"Q 4756 3084 4391 3084 \n",
|
|||
|
"Q 3944 3084 3684 2787 \n",
|
|||
|
"Q 3425 2491 3425 1978 \n",
|
|||
|
"L 3425 0 \n",
|
|||
|
"L 2847 0 \n",
|
|||
|
"L 2847 2094 \n",
|
|||
|
"Q 2847 2600 2669 2842 \n",
|
|||
|
"Q 2491 3084 2119 3084 \n",
|
|||
|
"Q 1678 3084 1418 2786 \n",
|
|||
|
"Q 1159 2488 1159 1978 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 3500 \n",
|
|||
|
"L 1159 3500 \n",
|
|||
|
"L 1159 2956 \n",
|
|||
|
"Q 1356 3278 1631 3431 \n",
|
|||
|
"Q 1906 3584 2284 3584 \n",
|
|||
|
"Q 2666 3584 2933 3390 \n",
|
|||
|
"Q 3200 3197 3328 2828 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n",
|
|||
|
"L 1178 4863 \n",
|
|||
|
"L 1178 0 \n",
|
|||
|
"L 603 0 \n",
|
|||
|
"L 603 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-52\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-65\" x=\"64.982422\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-63\" x=\"126.505859\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"181.486328\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6e\" x=\"242.667969\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"306.046875\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-74\" x=\"358.146484\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-72\" x=\"397.355469\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-75\" x=\"438.46875\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-63\" x=\"501.847656\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-74\" x=\"556.828125\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-65\" x=\"596.037109\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-64\" x=\"657.560547\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"721.037109\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-66\" x=\"752.824219\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-72\" x=\"788.029297\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"826.892578\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6d\" x=\"888.074219\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-20\" x=\"985.486328\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6d\" x=\"1017.273438\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"1114.685547\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-64\" x=\"1175.867188\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-65\" x=\"1239.34375\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6c\" x=\"1300.867188\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <clipPath id=\"pedee96d3df\">\n",
|
|||
|
" <rect x=\"7.2\" y=\"22.318125\" width=\"331.040769\" height=\"249.48\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" </defs>\n",
|
|||
|
"</svg>\n"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 700x450 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"def visualize_reconstructions(model, input_imgs):\n",
|
|||
|
" # Reconstruct images\n",
|
|||
|
" model.eval()\n",
|
|||
|
" with torch.no_grad():\n",
|
|||
|
" reconst_imgs = model(input_imgs.to(device))\n",
|
|||
|
" reconst_imgs = reconst_imgs.cpu()\n",
|
|||
|
"\n",
|
|||
|
" # Plotting\n",
|
|||
|
" imgs = torch.stack([input_imgs, reconst_imgs], dim=1).flatten(0,1)\n",
|
|||
|
" grid = torchvision.utils.make_grid(imgs, nrow=4, normalize=True)\n",
|
|||
|
" grid = grid.permute(1, 2, 0)\n",
|
|||
|
" plt.figure(figsize=(7,4.5))\n",
|
|||
|
" plt.title(f\"Reconstructed from model\")\n",
|
|||
|
" plt.imshow(grid)\n",
|
|||
|
" plt.axis('off')\n",
|
|||
|
" plt.show()\n",
|
|||
|
" \n",
|
|||
|
"input_imgs = get_train_images(6)\n",
|
|||
|
"visualize_reconstructions(model, input_imgs)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "Z5keSdPPnzhP"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Masked AutoEncoder\n",
|
|||
|
"The follow code are the demonstration of Masked Autoencoder implementation and visualization"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "qHp1VzhtoYql"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Import Necessary Libraries"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "DKr2eCkDny9B",
|
|||
|
"outputId": "b9997a91-52ba-4ca5-c38a-3ac64a224c78"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import sys\n",
|
|||
|
"import os\n",
|
|||
|
"import requests\n",
|
|||
|
"\n",
|
|||
|
"import torch\n",
|
|||
|
"import numpy as np\n",
|
|||
|
"\n",
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"from PIL import Image\n",
|
|||
|
"\n",
|
|||
|
"# check whether run in Colab\n",
|
|||
|
"if 'google.colab' in sys.modules:\n",
|
|||
|
" print('Running in Colab.')\n",
|
|||
|
" !pip3 install timm==0.4.5 # 0.3.2 does not work in Colab\n",
|
|||
|
" !git clone https://github.com/facebookresearch/mae.git\n",
|
|||
|
" sys.path.append('./mae')\n",
|
|||
|
"else:\n",
|
|||
|
" sys.path.append('./mae')\n",
|
|||
|
"import models_mae"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "vrdyiqpWod8J"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Build up necessary utillities"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 131,
|
|||
|
"metadata": {
|
|||
|
"id": "_De1rOh8ny51"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# define the utils\n",
|
|||
|
"\n",
|
|||
|
"imagenet_mean = np.array([0.485, 0.456, 0.406])\n",
|
|||
|
"imagenet_std = np.array([0.229, 0.224, 0.225])\n",
|
|||
|
"\n",
|
|||
|
"def show_image(image, title=''):\n",
|
|||
|
" # image is [H, W, 3]\n",
|
|||
|
" assert image.shape[2] == 3\n",
|
|||
|
" plt.imshow(torch.clip((image * imagenet_std + imagenet_mean) * 255, 0, 255).int())\n",
|
|||
|
" plt.title(title, fontsize=16)\n",
|
|||
|
" plt.axis('off')\n",
|
|||
|
" return\n",
|
|||
|
"\n",
|
|||
|
"def prepare_model(chkpt_dir, arch='mae_vit_large_patch16'):\n",
|
|||
|
" # build model\n",
|
|||
|
" model = getattr(models_mae, arch)()\n",
|
|||
|
" # load model\n",
|
|||
|
" checkpoint = torch.load(chkpt_dir, map_location='cpu')\n",
|
|||
|
" msg = model.load_state_dict(checkpoint['model'], strict=False)\n",
|
|||
|
" print(msg)\n",
|
|||
|
" return model\n",
|
|||
|
"\n",
|
|||
|
"def run_one_image(img, model):\n",
|
|||
|
" x = torch.tensor(img)\n",
|
|||
|
"\n",
|
|||
|
" # make it a batch-like\n",
|
|||
|
" x = x.unsqueeze(dim=0)\n",
|
|||
|
" x = torch.einsum('nhwc->nchw', x)\n",
|
|||
|
"\n",
|
|||
|
" # run MAE\n",
|
|||
|
" loss, y, mask = model(x.float(), mask_ratio= 0.75)\n",
|
|||
|
" y = model.unpatchify(y)\n",
|
|||
|
" y = torch.einsum('nchw->nhwc', y).detach().cpu()\n",
|
|||
|
"\n",
|
|||
|
" # visualize the mask\n",
|
|||
|
" mask = mask.detach()\n",
|
|||
|
" mask = mask.unsqueeze(-1).repeat(1, 1, model.patch_embed.patch_size[0]**2 *3) # (N, H*W, p*p*3)\n",
|
|||
|
" mask = model.unpatchify(mask) # 1 is removing, 0 is keeping\n",
|
|||
|
" mask = torch.einsum('nchw->nhwc', mask).detach().cpu()\n",
|
|||
|
"\n",
|
|||
|
" x = torch.einsum('nchw->nhwc', x)\n",
|
|||
|
"\n",
|
|||
|
" # masked image\n",
|
|||
|
" im_masked = x * (1 - mask)\n",
|
|||
|
"\n",
|
|||
|
" # MAE reconstruction pasted with visible patches\n",
|
|||
|
" im_paste = x * (1 - mask) + y * mask\n",
|
|||
|
"\n",
|
|||
|
" # make the plt figure larger\n",
|
|||
|
" plt.rcParams['figure.figsize'] = [24, 24]\n",
|
|||
|
"\n",
|
|||
|
" plt.subplot(1, 4, 1)\n",
|
|||
|
" show_image(x[0], \"original\")\n",
|
|||
|
"\n",
|
|||
|
" plt.subplot(1, 4, 2)\n",
|
|||
|
" show_image(im_masked[0], \"masked\")\n",
|
|||
|
"\n",
|
|||
|
" plt.subplot(1, 4, 3)\n",
|
|||
|
" show_image(y[0], \"reconstruction\")\n",
|
|||
|
"\n",
|
|||
|
" plt.subplot(1, 4, 4)\n",
|
|||
|
" show_image(im_paste[0], \"reconstruction + visible\")\n",
|
|||
|
"\n",
|
|||
|
" plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "8wt9sd2tolyv"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Load one image"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 189,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 422
|
|||
|
},
|
|||
|
"id": "_EbEF8gQolnq",
|
|||
|
"outputId": "df774563-3070-4585-9809-8a950e3c303e"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMjkxLjYgMjkxLjYgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic03dJLctMTg1yd1JwDubSR/CSi7kMFbKAOF3BQCELiMsVDBXcgTidywDIy+UysjTUMwOycqAsCJkDlIWxMri40rgKFcz1jMDYyBxBFqUqhCvkKeg7As0rBhqaBcTlQMPcFVCdUAhVD7ISwoLh5FwFfU9DBZd8hUCuQC4A978svQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjEyOQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagozIDAgb2JqCjw8ID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9JMSAxMyAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMzg1IC9IZWlnaHQgMzg1Ci9Db2xvclNwYWNlIC9EZXZpY2VSR0IgL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDMgL0NvbHVtbnMgMzg1ID4+IC9MZW5ndGggMTQgMCBSID4+CnN0cmVhbQp4nJT9aZMtPZImhj3uACLibLnd5d2ramq6e2ZIGyMlmdFkMhn1RWai6ZfK9A/EbzQbUpQ07OF0c7qnl6m93u0ueTPzbBEA3PUBSyBO5ltNnqo3b2acCATgcLg/7nB3kOi73/zdf/xv/5//j//X//Df/3//+q/N1S0bCwAagcAwBCYiBUUAAAEMEBSAqIgqCCBYawgEQESiAICqavQEIiLDxKQEIRC4AxERLHN6RCGAEiKRDquhc9317rrr+r4fXt29WW/W19eb8/n07t2Pp/Poffjl3ZvBOWW9f3r8/sP7X3/7h0/7JyW2tt/2V6QEhREAKgjKoiwgJQbAUKigfogIIFKQpkEpCACgUEUZHNJgFYkGcGACNN8IhaiqKqd7mZjBaD4KVUBVRVUBgFRVVUUDVAECDJFVpN6le8qL564CSOQEMI+BafEuAkRJAUNpdACpQlH/TB8BAcT5ouap5fQaZILMH6b84vpLuQ5ONypBM9kKYbncWgeU+iqY7zEEBhsl0mbcRMRltPUDBVRASJOWey7STGVmvELyxIVKRMzcdJsAYibO71AAqiIiACsgkiY09yc9m36mRojIGLN8Y51sbf8kImYQMYGgIGiiC7MlStcEADGgpKoikvuH/CIkulJtu3LR5ad2rxnmxR15Jmr7uSUF60zJ+qL0bW2T8tSAqCWmQjSRqfKScvlK8yukNP6871YRVaOIhwqltplJRCkRJa9IhYoIERSUVg1Tfm96teHCKGAo2DARGQzMbI11lg0TqYKIjE2z2dnOMLMxRMyGDRMbWq3XfdffXN/2/dD3w+3tq9VqtVmvpml8+/bjeRy991+u1x1zlOnV/nBzdW2MeX9///7xQSJi8FAikIKISJjSulJEiJgkOdIACKyU7itXE8Uz9VCXTrmuzaVC0Dq5VVhRWuxZ2JSlRfkrUF3wAIMSnZuFWt5D+cfMBYXhl0z1rE+lBaRxUfNuaOYSzV+2bKp5amcS1HaptlY70QwKpNCW3bW8QmeWf2FBQFUpkT3RnlCZnlQpEVVrm5RnTrPYrr15ztZFDKVf8xpg5kqg1IwIiFUTyVS1vqxZgcs2kSRavefZmBYyqBVSCrCi9lzza2fSaDOPNE+2QhOTvCx35kfyu6jhh8UzlYku2lFVqhK7XkxaMzFw4aPmhjqv2na3DLt8m5ZB+ZknpYy0jtECXnQM/ggEY2CtYWNAqsoiECVRQEVEJAZAlCAwAFkLa0xnbWeNMcQEYiJjnDHOmGFlO2d3q6vOub7r1quhcxZCxDBOjbHWmtVq61w/rDbO9f2wGYZV1/Wb3dUwrG/v3q5Ww2o17HbXrustXIxxnM6jP3s/rcZH8ufp8DCep9Nx+p//9m9+9+23/+Yv/6dPj48f7h9ADDbUdcQMa5jJEIIXjSBLpApRMBGxEbCCiZQQSBSiBFM4FQoUTEKsABisonVtEprVk+ULcVURZeEmmZCWqSkYJrdCpkg7UlUFVR4VQElBSmAqy1EKhKOZ57RhiCJtSIhAYBAl1FrZs7BjYUpqrmoRO0mVUF3GRcIQV6iLokupMnUmi5QRaZYVZKiKtYbLKTOjAoJISLyO2hQ1iya1JKlLmYuTLCC6ULBVyJZrWqFQ+pmRLyHjiSSOub41S7ZWxFTpg4I1lq0tPu265zTdudd54QkR19sIACP3pRFqTE1blUzN/C0FSUVn6a+2w831LLYbMs8fWiI5VBGekHImFYiLDEUdUWIkWjSdyQpwFkCkKPRuekUAYAlCKiJBNApUNYoCEhLks8YysbOdMabrbD8Mfdevt1fOub5z1prOmb4ja8kxrOFV33V93/XDdnvVd8Nuc+WM7Zzrh8FZpyrEyg5Ehtkas2PurBuYjbVJdhnremvtMKySnOpsx2QIxrD2nTN2JZ1HOIhX+NHGuAL+5S9+8fUXn3/+5Wc/fPj4N3//D+/vP90/Pu7Po49RIMSkhlUIyhKUAANWJVVohCiEBKwwSOhfKkBQ4kIyWkruRGNZTDuUiAjEFQ2VfzSpkbI2VDldmxEuVAhVHsySgcokp4knkyQVNLExUWqXlupOEgcRA6RknuOPBUfmC4oCSbKgROlKy7TIBuVCABXEkkB5y8tLNAkU4ZDt4dJuYUbN9FRRIQIraRHjALEpFm3V0CBKwkNfNIu0WMCpcWNMxloqgKbphkpR8pR0dTF2VCDJGBRoNmeJVDXjqQsh1BonDYLUWWchLWHOL66D1tKlGTXPiKIxvATtCxdCqEV5FxJzSY35OWlcElrlXH4tigqSIvC0IndhmjVxYfkKwopsElp0EIAmsFl+EkgSHWyigEjUzFlCxAohAhN6Z5x1q9W677rdbrvbXW22u9ev3w7DsB5W1hrX8TDAWfQGveWr1dCtN/16c331tu9Xu/WVMdZZ47rBGKsIIIUFYACjugMcUVdIQ1pE+KxdoYgqygoQsWUj4ClK9FM4H9WDPX315rUZ+p/98uffvXtnnftPv/0t/RH+w714H0UAilmJsohwkdkqEAGpSjLRjSZRHguuYRArx+QHKzZNkg9aoEpmKU2WQ9Ko86xXMaTV2hIUZbuwNKTMOiF3A4AqIRlrM2Cv5k3y72jGLI2HK8skIlCa6bqKG5JSK4Dy9ypZM1Yeb6BI6g8KzNHGWLgUUs3oCyC64EaoqHAZb5pj0mZ5qaR1VNmAiKp/SkTKiq3rrrR7qfmzQEmtMMys40E8DxQaQUxEJAmQJGegghjzgpZZBGjBVqCZvs+G2azT8iYBTGYhqsojCaEFpKo006VUXb7kRWvx+efF65fPNo1Xz2GW4fkiUBSnz
|
|||
|
"image/svg+xml": [
|
|||
|
"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n",
|
|||
|
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
|
|||
|
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
|
|||
|
"<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"291.6pt\" height=\"291.6pt\" viewBox=\"0 0 291.6 291.6\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n",
|
|||
|
" <metadata>\n",
|
|||
|
" <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n",
|
|||
|
" <cc:Work>\n",
|
|||
|
" <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
|
|||
|
" <dc:date>2024-02-20T21:06:56.375875</dc:date>\n",
|
|||
|
" <dc:format>image/svg+xml</dc:format>\n",
|
|||
|
" <dc:creator>\n",
|
|||
|
" <cc:Agent>\n",
|
|||
|
" <dc:title>Matplotlib v3.8.2, https://matplotlib.org/</dc:title>\n",
|
|||
|
" </cc:Agent>\n",
|
|||
|
" </dc:creator>\n",
|
|||
|
" </cc:Work>\n",
|
|||
|
" </rdf:RDF>\n",
|
|||
|
" </metadata>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <g id=\"figure_1\">\n",
|
|||
|
" <g id=\"patch_1\">\n",
|
|||
|
" <path d=\"M 0 291.6 \n",
|
|||
|
"L 291.6 291.6 \n",
|
|||
|
"L 291.6 0 \n",
|
|||
|
"L 0 0 \n",
|
|||
|
"z\n",
|
|||
|
"\" style=\"fill: #ffffff\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_1\">\n",
|
|||
|
" <g clip-path=\"url(#pfabaa1558e)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAAYEAAAGBCAYAAACAWQ0kAAEAAElEQVR4nHT9Z69s2Zamhz1jmrVWRGx7XJ50N/Pe8lVdVV3dZNOrQfCDRAKEDCH9DP0dgYC+k2yIggRRDhIhCUSbUpFNVnV13arr82beNMdtFxHLTDP0YcwV+9xqaAM7z85tItZac85h3vGOd8g/+l//h/r6OPIvXr3lh7/8ll++uuGTq0vOuo5nQ6TkyrJk7vYLhynzq/uRLI7a9Tgf8S4gw4yGzNRNXA5P+WD3Pd6923PYTxwf3kFdcC5RUapCyQOoB6CLhe2QuX7xIZvdBa9ub0nThN7f8tmHW37jkzO2F+fkKvzZv/iCHAbk8gP+k//gH/Bv/sEPePjrn/KLL37Ff/p//n/hXz5j8/2PkEOhjAvfffNLulB5duX4vc0Z3x+28PQpD6XwZ1/8kuPDwuEukUOELrL7+CkOgUPm7s09+9s9XQQfPN3FGX3fsdn0pLGQ58K7t3ekUqkIqSQKid/9O59x9eyM3QcRnWfK/Z7jW2V6qPzoJ9+Ql8qu68jqyNWBc4hAoOKc4ESoIqiC5EKolR0LmxjYdJHDMjOXyl2FBGQnOPE4PF3xuCq4BJtN5Pyi5+rJht1Zz9OXT1BXGcvI0A8M/UAQWObEz372Lbd3D7x+fUOaoWSBrkMcQEUUHAoeBIjJIZqBhc8+fsnT6yuGbU/VysNhZLvZcLbbcDg8ME8zt29vEIToPcOwJcYOqlJrpSyJ43hkfzwynO2Q4LnZj3SbgesXz/m93/0DPvnoe/yjf/Rfsr+7449/8yVXg/JkU7i5v+Mwjry52VOqIgLj4hgXRy6FCmjsSFWZSyW4Ld5FEKhaSSlRgQocy0IulXLMvHhyxe989jF//Fu/xacfvCC6yO7yjO//3d/g6vlTrl48IdXEPE38/If/ktfffMtPf/hjfvbld3z3+pb7KZNqJdXC/f0DN7f3BHE4EaASY8fu7ByKolmZykyhUgAHRFWkVlCoXlBAtVJKQavaIojtS+c8Xjy9KkFh2zmCD/TdBlcTUhcoe6JTvvd0x/Wu58PLHS5PSM300RG7wO58h/ce5xzkhBPl6nwABK0wLZmlVAgBCYGw2RK9o/cOqGgtjA9Haq1UVYZhYBgGdtse7+3e51Q5zIn/7odf8O27ey6uLnl2fc0f/NYPGB9umPe3BCrBC7vdFkWoVVlKIZfKIR1INTOlGeciTjqqdqg6cnaIBLyLOCeIgxAcpVSO40RKmZwL0p7nNC+UWkmqLLmSS2VJhVKVolBKJudMrYoCoetB7G9zsXt0QPDC2dATgycGT8kJrRUXIk4ED1ASlIIXD2KLp0ClUrDXqnhKhTnZ/S6loEWpRVmmDN4jXcRvO6QLjBEIju5sw8XFlqvLHbGCVBgPleO4cHd3xMVI6Do+/fx7iBPevXrF+LDneH9PHwPeO8K0LKSUqVnxeKIPUKEWpVRYSuGYZ2YqJcLu+pylwiFXalVqzricEKcMfU+MAYBcMktOwLppK7VCqYArAAiC80IIgVIK8zKT0oJqZdhtCH2HOsfhMLHkCiKICF6UIQZ2w8DbVBiXTEpQ5oIcEzJXNK9HStEqlAqpQlcSrhScFltQcRR1SBWooCilHUmlohVqgZITxQtaA84JIXpiF9CUGVMGV3EiuPUgqVKKMk2FzXDGzkeeX+45HmfmKaMITrBNIYAqVAXnANrPBUTIBeasIIWlQlb7dRFBxIFi14qjoqhUijiyFGoQanAsVFAl14r3nk3f8eTykpor0+2ML8rDzZ6yZDIV0YoqQAF5vB7BPlQFVDjOiXgcqQEQpWqmVjtAKDhxBO/NeKFULVQtOHGI2KuJczjvqCWDVoSKlsxyPHD7+hVRQcpM5+37VYWCQ/FAAPGIU8QJ4h1i8YVdq3iEiqhCrVQt4BRFEbFrAsWLgijBC1EUqYV5OnL/cM/D/UR4HXmT9lw+veLq+TXd0IEo+7sjucD51SUfFmV7cU63u2JOhS+++ppS4fWbO3ywdwJzQKUU8z4o4sAp1LYHioKrdv1VQVWpbT2UdskIigULq3HSNciqSioFrxXbTQ5HZSmVpSipQnSB4MT2SlXmlBicowuRiiJamZZ8WutcFUUQBFWlpBmvgSoBVKmqZATE4YJDfKCKkFXRCt47ioC6QG3X7n3EeY8C4uzsUKudwVKwKMT2md2mw4sn+IiTiHOBUoTa9qZzgvfmAE57S8y+gNkOdXb93nsLElJGa0WrrcnqBGrVdiRt1UopdtacO51vx+P7rGvb3nT1083m2/va94WyLqI0GwiUUqlFqdX2qbR1t/0hZsoEaq1QCniHqODxSBVqquSqUCA324wIXd/TbzbEvkO1ogK0Zy3eI84Rbu/3PMyZMiudRC7iFl0glcIUlYdl4t3xhhw6ZOh5+dHnjHNi/Oob5v1CGhd8XehxPL9+QWRLTcpxmng4PLDxBRFFqaQCS4Zuk3Ch4IiEGOn7jnlZOCyJw+GBLgaefvic7RnUCN989R2Hw4SyIXhPpPD0bMuHT57wl8eF17cjD3tF4kLs9+2kVXAeEaEkZY5wTMpmPtDXjK8zRRyH0CHZ45PHLUp1yiwLSRJVM2VR1AnVKVIzQxS6fosbOpa8QcaRu9sHXBBCdMSuI4QOLYl5yry7Xfjj773ko6sP2OF49fod//1f/ZIQI7H3VOdQBNJiG6lWqgtULwTnUJRpgille3gOtEUTIg5HoGq1qBp71sUlxCs+eJbeEzcdD1qgFkouvOgjz68v+ft/9PfpfeTjsOWHP/klt6/2zNMdkyZ8bRvaVVSE6gTvA97CaHOYGnh9u+fdOPKcM/rg6YB5NqfmEaIzh5NzIqVEKgvVKZtuY4cpCS54YhdZlplcC847ypy4+/aBv3n3mp+HiF8WLqOjpCNL7pnrQKZHRRCfEBTngxl8qUgBqiB0+JpxOpsDIYO3+MB7R9WM1kx00CN0nbATxS0z79685vBwz5/98x9ytz9ynybOz3dcXZ3z2W9+xpNn1/z2Dz7n8nLLZ7/1G/zGHzi6PvKv/1v/kIf9zH/2n/1X/Df/+P/LD//mlwTncV6o2CEdxxHvHN57vBecOmpO1FpJLSATEYoqFVtfOZkM+yjVjCfY6xYRUoWslblMBAfR22upOu6njPeF86RcDgNddOS0t7P+sMeHjsthRy2RnBNv7m9RwDlHcBHvAwGgZKbpAYae4LaU4qkqTFUIMbLbbUEgCxzN5xIlkoHsKkU9tTr6bkMXe6pUXHTETaRMiVIrc1pwziJ7ix8cXiLiI8EPiHhEPAuFUsEHZ44kCNICqVoV5xzb7ZZSCjlni/JrPRn5qSRKtp/Nc6I0Z1dVT85ojYWc98S+w3tPcM72HKDSHHW1Q+PEAjxpBlfE49ThcKhCybm5ZsE7Z5nJdCQXpRbQCq4q2pyBC67ZCSXnjNYCMuDEETUii5APhTkltCpLgVwUFzznVxdcXF+xuzwnpUQRwHti1xNjtCDt7f6Bd8fEl2/27JdMceapinPoMOA7YRgcbAek64nXPceHylETSROlZs77Dd3Q48MZaaw83LxmWR6ACapYjiKO3XnPZd+zuRpw0VFSpU6F/X6hqLMsoSq1FN7d3ZMXzzR7Fjr8JvD0zFLWEJRXX37BP68Lf/7XP+WX37wh9p6iSt6PVF3hlIoPgA+Mi+POwQea2UhhGwJvxfNQImc4OnFoGVsmABVHweNLRQuoFKgLosLu3NP1wmYbkVDYFU+udlhxFRFw4lH1pOpI80yeHni69eRdRBBb6ZpQIoqztF4roRZUBCVQSBZYhHCKWFtYbtBahSoGG4g4KtXS4E1Hd75lc31B2G2RrmcqBc0FnRJ3b+7pZmX6+C1nF+f88ecf8mSIXAyRH3/1S757946ffnnLlDNJFHERCYGMRUk+OFztcBpAzHAdHo4sTuhFmMNCF2aCOkSVlGecE/qhx3cW/eW6oAUqhRA8u7Al9p1lhDkDikOJXghS2W0jwTs6SYQqSHH0ruI7qBtHVRDvGWJgLnA4TKRSqGWyzEYKWYSCUHykisFpFYcSoNSWrQhdF7i4PKNGOOj
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <clipPath id=\"pfabaa1558e\">\n",
|
|||
|
" <rect x=\"7.2\" y=\"7.2\" width=\"277.2\" height=\"277.2\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" </defs>\n",
|
|||
|
"</svg>\n"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 500x500 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# load an image\n",
|
|||
|
"img_url = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' # fox, from ILSVRC2012_val_00046145\n",
|
|||
|
"# img_url = 'https://user-images.githubusercontent.com/11435359/147743081-0428eecf-89e5-4e07-8da5-a30fd73cc0ba.jpg' # cucumber, from ILSVRC2012_val_00047851\n",
|
|||
|
"img = Image.open(requests.get(img_url, stream=True).raw)\n",
|
|||
|
"img = img.resize((224, 224))\n",
|
|||
|
"img = np.array(img) / 255.\n",
|
|||
|
"\n",
|
|||
|
"assert img.shape == (224, 224, 3)\n",
|
|||
|
"\n",
|
|||
|
"# normalize by ImageNet mean and std\n",
|
|||
|
"img = img - imagenet_mean\n",
|
|||
|
"img = img / imagenet_std\n",
|
|||
|
"\n",
|
|||
|
"plt.rcParams['figure.figsize'] = [5, 5]\n",
|
|||
|
"show_image(torch.tensor(img))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 141,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "RaMd6bemoqLB",
|
|||
|
"outputId": "a8612b2b-6695-4fdf-eeef-e1b709fccab0"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"File ‘mae_visualize_vit_large.pth’ already there; not retrieving.\n",
|
|||
|
"\n",
|
|||
|
"<All keys matched successfully>\n",
|
|||
|
"Model loaded.\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Patch for numpy error\n",
|
|||
|
"np.float = float\n",
|
|||
|
"np.int = int #module 'numpy' has no attribute 'int'\n",
|
|||
|
"np.object = object #module 'numpy' has no attribute 'object'\n",
|
|||
|
"np.bool = bool #module 'numpy' has no attribute 'bool'\n",
|
|||
|
"# This is an MAE model trained with pixels as targets for visualization (ViT-Large, training mask ratio=0.75)\n",
|
|||
|
"\n",
|
|||
|
"# download checkpoint if not exist\n",
|
|||
|
"!wget -nc https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_large.pth\n",
|
|||
|
"\n",
|
|||
|
"chkpt_dir = 'mae_visualize_vit_large.pth'\n",
|
|||
|
"model_mae = prepare_model(chkpt_dir, 'mae_vit_large_patch16')\n",
|
|||
|
"print('Model loaded.')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 134,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "RaMd6bemoqLB",
|
|||
|
"outputId": "a8612b2b-6695-4fdf-eeef-e1b709fccab0"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"File ‘mae_visualize_vit_huge.pth’ already there; not retrieving.\n",
|
|||
|
"\n",
|
|||
|
"<All keys matched successfully>\n",
|
|||
|
"Model loaded.\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Patch for numpy error\n",
|
|||
|
"np.float = float\n",
|
|||
|
"np.int = int #module 'numpy' has no attribute 'int'\n",
|
|||
|
"np.object = object #module 'numpy' has no attribute 'object'\n",
|
|||
|
"np.bool = bool #module 'numpy' has no attribute 'bool'\n",
|
|||
|
"# This is an MAE model trained with pixels as targets for visualization (ViT-Large, training mask ratio=0.75)\n",
|
|||
|
"\n",
|
|||
|
"# download checkpoint if not exist\n",
|
|||
|
"!wget -nc https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_huge.pth\n",
|
|||
|
"\n",
|
|||
|
"chkpt_dir = 'mae_visualize_vit_huge.pth'\n",
|
|||
|
"model_mae = prepare_model(chkpt_dir, 'mae_vit_huge_patch14')\n",
|
|||
|
"print('Model loaded.')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 110,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 503
|
|||
|
},
|
|||
|
"id": "xymH8jt4orm6",
|
|||
|
"outputId": "a60ce3ce-bfc2-48f4-e92f-451a55b1322a"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"MAE with pixel reconstruction:\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"ename": "RuntimeError",
|
|||
|
"evalue": "einsum(): the number of subscripts in the equation (4) does not match the number of dimensions (3) for operand 0 and no ellipsis was given",
|
|||
|
"output_type": "error",
|
|||
|
"traceback": [
|
|||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
|||
|
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
|
|||
|
"Cell \u001b[0;32mIn[110], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m torch\u001b[38;5;241m.\u001b[39mmanual_seed(\u001b[38;5;241m2\u001b[39m)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMAE with pixel reconstruction:\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 4\u001b[0m \u001b[43mrun_one_image\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_mae\u001b[49m\u001b[43m)\u001b[49m\n",
|
|||
|
"Cell \u001b[0;32mIn[46], line 28\u001b[0m, in \u001b[0;36mrun_one_image\u001b[0;34m(img, model)\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[38;5;66;03m# make it a batch-like\u001b[39;00m\n\u001b[1;32m 27\u001b[0m x \u001b[38;5;241m=\u001b[39m x\u001b[38;5;241m.\u001b[39munsqueeze(dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m---> 28\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meinsum\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mnhwc->nchw\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 30\u001b[0m \u001b[38;5;66;03m# run MAE\u001b[39;00m\n\u001b[1;32m 31\u001b[0m loss, y, mask \u001b[38;5;241m=\u001b[39m model(x\u001b[38;5;241m.\u001b[39mfloat(), mask_ratio\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.75\u001b[39m)\n",
|
|||
|
"File \u001b[0;32m/usr/lib/python3.11/site-packages/torch/functional.py:380\u001b[0m, in \u001b[0;36meinsum\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m einsum(equation, \u001b[38;5;241m*\u001b[39m_operands)\n\u001b[1;32m 377\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(operands) \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m2\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m opt_einsum\u001b[38;5;241m.\u001b[39menabled:\n\u001b[1;32m 378\u001b[0m \u001b[38;5;66;03m# the path for contracting 0 or 1 time(s) is already optimized\u001b[39;00m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;66;03m# or the user has disabled using opt_einsum\u001b[39;00m\n\u001b[0;32m--> 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_VF\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meinsum\u001b[49m\u001b[43m(\u001b[49m\u001b[43mequation\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moperands\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# type: ignore[attr-defined]\u001b[39;00m\n\u001b[1;32m 382\u001b[0m path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 383\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m opt_einsum\u001b[38;5;241m.\u001b[39mis_available():\n",
|
|||
|
"\u001b[0;31mRuntimeError\u001b[0m: einsum(): the number of subscripts in the equation (4) does not match the number of dimensions (3) for operand 0 and no ellipsis was given"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# make random mask reproducible (comment out to make it change)\n",
|
|||
|
"torch.manual_seed(2)\n",
|
|||
|
"print('MAE with pixel reconstruction:')\n",
|
|||
|
"run_one_image(img, model_mae)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 347,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"(2400, 2400)\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"118"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 347,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMjkxLjYgMjkxLjYgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic03dJLctMTg1yd1JwDubSR/CSi7kMFbKAOF3BQCELiMsVDBXcgTidywDIy+UysjTUMwOycqAsCJkDlIWxMri40rgKFcz1jMDYyBxBFqUqhCvkKeg7As0rBhqaBcTlQMPcFVCdUAhVD7ISwoLh5FwFfU9DBZd8hUCuQC4A978svQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjEyOQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagozIDAgb2JqCjw8ID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9JMSAxMyAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMzg1IC9IZWlnaHQgMzg1Ci9Db2xvclNwYWNlIC9EZXZpY2VSR0IgL0JpdHNQZXJDb21wb25lbnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwgL1ByZWRpY3RvciAxMCAvQ29sb3JzIDMgL0NvbHVtbnMgMzg1ID4+IC9MZW5ndGggMTQgMCBSID4+CnN0cmVhbQp4nOz925Jk2ZIciKmabY/MOn0DBxgKBUKZETzzF/jAz+Gv8PvIBz5QBCBkZAigQXY3uk9Vpu9lqnwwW9sj63Ju5YmKnMzVp6Mybh7b98WWmZqqGv9v/9f/y5Hx/v0NYQTAIBkASEcAAMwECQIMgwBIkkySjCCCoAOAIcAA0F/EDRGMQMQRPPbLJEggIkgShmTZ8mkXFgQtfDRgoEr3xf/337+7V0gASHxb39ZvswwATvol9O/+5l9eopIraMKA0A+QiyoYsLEMmgHdXnR78XEDIwtQYZ20AQBh0oAIwTgLdfLDP0atWCd0AgJhBpiKFBMFlPGxLNk668PSvX74gGWecC3VOvXuPH739//u/1wvv3PeftPT9kfWcQSPjFumww6TSSC4YxBN9FkCd2Ahg2AwQTK4Y5ABgkJHKZAEDgQRER1v+heAQP9mkARFB8qy07ZpmUD2FV8kwMxM81sA+rZ+82Ugwxk4Dh7BDIZJgCDgMADT7qAEYseg9BHKBHlABnCQBgwHAYoMwLAlOBgZVgTBMAwGGGaSDPaTQR9wwWXTBCLoNCXbFhwUIzOQoUzAHUHf4Drev+TtOL57OZw2QSRJZOdDZBSgffhkBshgEhEIkAgGQcIEYJggDAb7AiAQxJF5RGQkiAAOMgBGkmAobMgyQs7SslUmYFpSfFx8/+4lgmd9C0Lf1m+8DNzCLxnv3ue79MFMR5cHhAGDCzAUdkABwgEcB/Jw3ADkukN0dXwCIsEQwhM8QALnuyDIBaZ7M2cI+xkLQlikF3TXTRCwjnAYIdAQ0hF5vLy81MuLOg/yGw1Ch10y7LRokqRBoODYZVcCBQCg3dVTB34BHXu4w3nH/SAzCAC2+pTaHZ4DBCkYRLqMqd8QtEyiK7pJv+C0ZQD2VHjf1rf1261+iO15nOfTgPsRwE5STNOdnIA0yUiQc7t3pLL7Hlc/TAhAMA0ZirnjCUx8s/tLMiQnTIsWXGWd8J1YgNxlIMhgxPzaHPRbXYdRNoSCE6AnqTQodnkLANGRASAc7HDcXzGnVFNfCJARXbPhkf3Z8lwWgQVzTkqHtfmpvhJTytmErQlk/Vp+/dPf1rf1WyzvexGd9fcN6/2RIh1iGUaGG3wgwejfU9/17ueFe3OlTatLptc7bkyk62cI8jxphAAZVfCCT1qwbcOEg9FlW//y2w1AAA7EDRHu9ARGNuIjsuPAVFoA5p0DoghzytTEXAXNFoCiEQo0gNMRy6gCJtEysYLVCZQYXdkRkYR5hGNh9X4jW73xfIs939YbWg46iEByIpGnMRO9hSYAI4FwDJgZBmwXINqUbQpuAAloFLU/xGGA3Luv77BVmp9RwdIq1Al8gO9E5YIL6o9ChYv2qzzgza6DDAQb1iI7T3mVmHhnQo9CyPAO395fvX6Me5OgYKI7bOBE9yst7EDUp9s78BMAgyGCCLPmp6+z+C0KfVtvZk0C9Orx+Mku2fd/Z/cArmhzZTqv4gN3utO/GI0iH+iSzY2QTPbVYYZe8AIq5uEiDKpf2qaxf+mNr4PZrSrvTENUEAkHkKRAGYO5EYXJGgEmQBRJgpzdAJwupQw2vtOnQaB3WKI3EQDmrTEgGxTIjAjSsC3X8qBM39a39aYWiQRoymHQkQlAQvdwNPdszI5uQhAWUMQyNbhrY9ITpASUwzB5vLBjCwoW/AIUw6g76s5acJFlakKhUYBsFgkjlcdSLtJTxbzhdUANvOwH3TF9RhhW17kTnablOEmLphyTAAwyxKuynRQKRUfzjRorGlSoIw6CgLlfYKJSQ2qczOwnG8a39W29heWg+xGHANG5H5t43P+xUyFvPMOGQT+aOdj5FPqjw1agQCMBTbkwXZr9hAEd60yo64dIAIzViJMcjPgyNu/DpwCgOmXh7iY2soPH++7TOyXYFLaAGAaKaLYiY2eeArr2DfoqdjvAuTbeD4GUmwYwB7ThuKY+Bvx2eQ3f1le6JhBweHTdZO+wAMDh3Rdz5IasAQAWLPb+q9g0uCG+9fZsBQzwjhCwH8kiN7BhUxoawJRmJBl5A4NdpZXpYA3F+OLMvNF1AIAZTijMYMLkPmDvYEEQDOHRD8M0GDEN9W4sCiJFgoiLpmUClNGJzy6P94s5QpRDYW62NWnM0WB18/4V+PRtfVtvYXUWdEAAo/lxIqYZ7gAYe/sVjHAnN928EWSEFRgwI0AhqBBcaIqwierXW1N7dFxjAY4iRBQR5gGGw44jpHDxHukj+1F+45v40afyVYbXrXlOR4uaXjnMCQMEfxIQJlnZ8Bwv9hDQgBo8gBwbmaP3t92YdNOTLoQPABjzBX8LQN/Wm1qflAgOG47hphju7ZVoIOEiFWmAIdNz0z/QGvJ61ZYKIKaCM6THQ0H6akZ7DVZNIhAhgAiE4KIYlfFFNJMPR+xKVrBdRDDCTYJumCiQu0cmQC3Q4EaOgQJNJxyI2GFKgI1ElGMojg3Vw7vIBUiGBBohNSbXojUYLEJJJmJ6lt/Wt/UmVt+5JAWvBo3TbN2Yr8LLgosM4hhWC7MfLatsTVUW1/5KOujoagp2FYwFio04C1bACSchhcETsYiEoZOAnMVAJm+gthrqNzxTf8o6/EmqdmUzHhTNwzvkgM67e/boJE5VuiHtTkk7h3rdTZzizsZVhjUCPaxIhQHtNMivaZCv/uC39W29mWXDmpxmCjBsxPlxk9tE93b2U9LByru1P/y5SYemAOFFiyEIqRGMnD+AMGEmICD7p2QBgTLCbrB1GN1v/dE5mkRgk112dezQ8D4f6D+jMbE+vzuSCNQEmcbofCAESn02QdDkh
|
|||
|
"image/svg+xml": [
|
|||
|
"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n",
|
|||
|
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
|
|||
|
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
|
|||
|
"<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"291.6pt\" height=\"291.6pt\" viewBox=\"0 0 291.6 291.6\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n",
|
|||
|
" <metadata>\n",
|
|||
|
" <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n",
|
|||
|
" <cc:Work>\n",
|
|||
|
" <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
|
|||
|
" <dc:date>2024-02-20T23:20:24.414200</dc:date>\n",
|
|||
|
" <dc:format>image/svg+xml</dc:format>\n",
|
|||
|
" <dc:creator>\n",
|
|||
|
" <cc:Agent>\n",
|
|||
|
" <dc:title>Matplotlib v3.8.2, https://matplotlib.org/</dc:title>\n",
|
|||
|
" </cc:Agent>\n",
|
|||
|
" </dc:creator>\n",
|
|||
|
" </cc:Work>\n",
|
|||
|
" </rdf:RDF>\n",
|
|||
|
" </metadata>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <g id=\"figure_1\">\n",
|
|||
|
" <g id=\"patch_1\">\n",
|
|||
|
" <path d=\"M 0 291.6 \n",
|
|||
|
"L 291.6 291.6 \n",
|
|||
|
"L 291.6 0 \n",
|
|||
|
"L 0 0 \n",
|
|||
|
"z\n",
|
|||
|
"\" style=\"fill: #ffffff\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_1\">\n",
|
|||
|
" <g clip-path=\"url(#p2a430e9937)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAAYEAAAGBCAYAAACAWQ0kAAEAAElEQVR4nOz925JtWZKeh33uY84VO6vQjQZaJEHIAGMDZpJg0oX0GHouPZmoG17oRteU6URRRpBgN4Cuqtx7rTncdfG7jzlj56GyMnNH9Q4sT4vcEes4D2P48fff7f/0f/yXOdx42Td8DNwNJ7EEYsOGMXbwAXiSNjFgAG6GG2AvYM4YYG7gjsTAHGyQfuPfjb/m3/k/JTE99ytL1v+d5MbB34x/y80ebPYgLfWCHBiGDXB33J0MIBKOhAzIA1JH6d/s4AYziTmJOTHfMB/cXpzEeRzOf//4S/5/x18wL+f265/hU75GSYBPn8jf/Y77f/1fk3/4PRkHQRIGD6vXpGmtOTiO4bANzAwz8JwYCQ5YstNrLElP0pJxOGYD23f8X/2vsX/1v4LbTfvwC51b3j8Rf/g9v/tv/i/kt99ix8S91EAaM+B3H4Mj4D7hIJgkk4Q0PBwfEx+TEYalsaUR05gTna8ngwRzYt/5q//tv+Gf/Jv/DePDC+Zf5twAeNyxb3/Ph//r/5nt29+z3e/cdmPbnXgBM9g/OuYJ+2S7BWMk2MDC4ZMTBukJTIzASNyMzQeELuLBQQBHOHjdroDMJCMJYAKYYWaQD8yM/bZDqa2Pf4B5d/h4Y7vB/o/gyAdBaJ045ICcST7geECGsek2mhZXBpEGllp0NjFzpMx1wpiVmtNjadTrU681PV6rWq8DwtaS4Uurx/50HXnq3IA0LbD1AqsXBescSSMTzOpd5vo9o95ga1NCkplEQtZ3POUpf1Ss/zEG2tzSBeuJWnvXNdxvzPVeSdbulUJNtDbXXnxLyfMXuxxhqY06ryQy6f+WSkhamaz39nuwOn/LpZve8swykSKun5lgEZCtB5O00LlFubiu90CSdmq9TINM0iEspNBbkdb1MwPzlB7KV5d1GX3WfS7NUw55esIIbICNxGZZiFpUva7MEx9GGGxG4gSWUnSZRnrKIfEpr8J2HayB4bibPH7kfRgTLDD/sDyZzAmZODtZZu0tFaUBw4JBQEadx6bjA2DqCvup0OuqKpawxIbhm8497g+8Pth9YMOICCKDiSz2U57yR6W1mxkj5e9nandMpCTTEkbpxNTe9Cwv7DOvV2o/5HVSusQqAl9R6duoTGtt7nKivB3FUjiZwSSYOYmUd6uTBA8YjFL2+rFR2zXrPD2UWHAY7ZS+kRwHxJEQSR66V7eJlPmwZeCOCTFhuIwVHu0PlwEwcga2yQjaZjgOd8dIhgXmhjvMUKRo7liAZerHEja9Bi/djbEN8IS0B76D71obHFn5kbZGCRsM1+s3c4Uf6XmaXovL+tGXphlmWrSGYe5atqmlKye6FWF5JpaYJ2ahE7kECecrf225fEMeGFPKmwEMwgIIvB2l8i50rlMLOEFX1IiYQCl5A98GtlU0wE3XwioEv3z7U57yHVmRszFw2ln3DEDZSOD0iA0GUiYjrZxFk9LPJCub4LgUZb6Ogd/SXzZKAWViORmt+DEsTgWeo3ziUmqA0h4OEcm4OmkY7jKS5Bkd+AhZjbfYaQlkEhn6t88zjBkye22WM6Sww8CjNOyolE4mHqbMQeiazAhGeLnHcpED2MyUpnbp1uPQ5w/zpa8SZbDtANLJcOnwPckPSvuwp1R5GPMOWOpzM0nK4Zc90OJqN/eVda21pAyKFpXjpfRcYQ0ha1PXaynWesQ8VqhyBrBvIVqMbdCsXAs9lp9tj/ZgZnkdTrrDGEQelzDNZAC88nKxAV5R0hfMSz7l3UgaOCaf1+Q4+apX0a78mdKslJDbNZnaaQblyDNtGQAt1TYCbyPt+Pjl+Mwn5oqqQWkLqwjB2ovP87wzy4msw84yfpZKWXS21kjcQ97wm4i+J8oLz/LoM40IHVTUsSibIsuedV7mih7olHFCpOFx5vqtjcDyIKWQzea6Tpa20vHp+kiAeYClY+nSXw75Iqc+PeEwfMIx63S288yijPDmqdtku6381DB5+547FdutZZUmhW8xMDacgfGoM1YVx2g3uxRjmg70zZJ5WorTB6ONlEVFBY7lwGvz5HSI48ybGdiLYejCZrpu3q3TQxuklP+wwDLY0hnz6f8/5Y+L9EWATYyB58BwJonbJD1IB8sdn07aqIyJtEp7wxiKsFFdAU5lfKret5E2TrO2xjikH4aSXRCwxeAl5IwdNpkWPBgqjA/plWnJhxxsZigGWnVTKcuhVPRIx/ONna7S5XN2mifPFNwe5z0ZiZeSNgybZ0RmLiM3sHUu7RxHn+QchAM2mVPXbkQ56pnkmPru6VpG1omMBOTEbjHIhMehmoPfjP2oWucuY2U5uCfM7JpAhR99JlKA8ojRd59X4qLIl79yVe59MfL6wFtKXn6zqkfQB3UGyebyuuLqYlmBmepx+noAhXxSwbjj+j71pwF4ys+XLoQ6wo8kWfvHATkh6cFyL7mmHevvtSc7yj2j8TYNb3AilyxURTTGOrdhSnVQkUDY+bbPMw7rfKzP6Vocf/3/Ly0rdZ1tkKoYn7ze+ZcsyHo8zsjH6qScziZUKroiBMPWn9coaaXRXT/fyTnXm9oQdfARIVSnOfiWuopO1ZhOA7L5lozN2camUANjxKbvyVjKUf8U7qv+TgvMQrkrg2G3UqRGhq9rklY5qDdWlm6O26YCSntTXagBSMdjrCq+b1U47jA2qghchbq+icQkM4RySEjGxVA+5SnfL3JKaqf2vlipBNhzQCTTJoHjDMID90nyWIG1MwAjZnmXI+hqHQnpgY1DKZk3OK/W+6POEtrrrYyCwxhBGkxyFXUbIrrV+RjBUdfoZZSSjWAr3aHMcgiq7q1A30iWAYBI5yilvVHVi5WuagexTXGyuTHc2IbqorPCm8ggO9YJ3d5tq885dD0TiKEnY5jqAsDM0sF70HUC7zuRqgUwnTGSMYL5W6WhjkOZGjfHK9O9tVL3Tvgsy3t6F6Co4PrT1lwQpVUuXovR2tM2YL3vraKCvh2jfCl0Oe30iBYiiCikU6errGLQXEYrOaMifXScDlbHAW8d8Dzlq5P2eC+BZD0e6zcrb1ipnkMFVfvcC+41bDQKyKqOkKaCqh5/OyWp0zrdPBm8cmg7ykYYlWjd4dIKI7lEPnp3g6H2DtQLim1WXuwZFH35M6s6AOlkm7rytCcwXSrBpBarMKzjb4QUhvD6qReo5nGN1uq+D+rxLKczsTjrIl6IKdsrBVd9A6oZ2XJG3WAf1i0lr/AvDdM1h5GwMQZmzghTvAYo2VSXoBaa48pf2nZ5LqvQI0uu13S+blvmUfWFwVlZ+PKi73TcOj962Wj6R55Yxmm0GpkQDSulLR3kgIposFAxD0UBr3b3U57yQ2LnUgmvlVjKUVGq1pLg2Y9ChCpda3ilVwp6CYSr8dFj4NXcOMdRa3acu/7tTq9EcMQACFvK20x1DwfSK/Waxh56nQxBgUxMEMYXT45QeuM+ARKPkCF4g5Nr9Zw5pAO6iIvgoBml+TwZnhyhezSycv8NriGZoyKzWUjJTZq514SBCrdl5azrqsd5LGMEY+izI1Vz6HRiNx9S0dfK0octle4mpNIxS38P2DrvaNGK0ElriOep2txi1XqlzAW5VOW6LXvheDEoj0Qgoko+rTLPW6zMLPNcB3dFKVCprjZSVZ1piFtGGYZrY5mrvG6r7K8IQktdhuHtzu0pX6ucvZenQ9RlKaYLTVf1OOuoU+8Eyosr1Mhow5C5onLhjoQ/Oj3rNzgvpBGqH5ZuePJQj0OGKh55iYK8YKIZlSvoa2Owe/8Yxs4RRvqdMCN8q7Tal5Wrnz4rE965dLcToTMOYwxfSS1FAPK0cyvbMYA8kZhW0HvfwMxJt1WjzBXVVR/WzfW9YaS7Io9dVd24F9TYFYVZAkc9tiUxIWbyOKpOYKYIZkJO6bLtdZpGNiWtqvrSlvV7KVXauz+xRssH7hjN6tItK9d3/q3C0zwPrIo4Z9G7jFF2ld/KsNl56PVmW6A3FAEs6F5dD6fi3TfCLD/lK5dzP1j62SRq65kzawlnDepzhbdgz2Ot29VNW9VDL2/
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <clipPath id=\"p2a430e9937\">\n",
|
|||
|
" <rect x=\"7.2\" y=\"7.2\" width=\"277.2\" height=\"277.2\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" </defs>\n",
|
|||
|
"</svg>\n"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 500x500 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"img_url = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' # fox, from ILSVRC2012_val_00046145\n",
|
|||
|
"# img_url = 'https://user-images.githubusercontent.com/11435359/147743081-0428eecf-89e5-4e07-8da5-a30fd73cc0ba.jpg' # cucumber, from ILSVRC2012_val_00047851\n",
|
|||
|
"mine_img = Image.open('./st2/6644818.png', formats=('PNG',)).convert('RGB')# Image.open(requests.get(img_url, stream=True).raw)\n",
|
|||
|
"\n",
|
|||
|
"print(mine_img.size)\n",
|
|||
|
"\n",
|
|||
|
"# mine_img.show()\n",
|
|||
|
"mine_img = mine_img.resize((224, 224))\n",
|
|||
|
"\n",
|
|||
|
"mine_img = np.array(mine_img) / 255.\n",
|
|||
|
"\n",
|
|||
|
"# print(mine_img.shape, mine_img[0][0])\n",
|
|||
|
"\n",
|
|||
|
"assert mine_img.shape == (224, 224, 3)\n",
|
|||
|
"\n",
|
|||
|
"# target = np.array([118, 111, 95])\n",
|
|||
|
"target = np.array([123, 116, 103])\n",
|
|||
|
"\n",
|
|||
|
"pre_ids_to_restore = []\n",
|
|||
|
"\n",
|
|||
|
"for y in range(14):\n",
|
|||
|
" for x in range(14):\n",
|
|||
|
" if (np.array(mine_img[y * 16 + 8][x * 16 + 8]) * 255 == target).all():\n",
|
|||
|
" pre_ids_to_restore.append(x + y * 14)\n",
|
|||
|
" #if y == 0: \n",
|
|||
|
" # print(np.array([[mine_img[y * 16 + 8][x * 16 + 8]]]) * 255)\n",
|
|||
|
" # plt.imshow(np.array([[mine_img[y * 16 + 8][x * 16 + 8]]]))\n",
|
|||
|
"\n",
|
|||
|
"# normalize by ImageNet mean and std\n",
|
|||
|
"mine_img = mine_img - imagenet_mean\n",
|
|||
|
"mine_img = mine_img / imagenet_std\n",
|
|||
|
"\n",
|
|||
|
"plt.rcParams['figure.figsize'] = [5, 5]\n",
|
|||
|
"show_image(torch.tensor(mine_img))\n",
|
|||
|
"\n",
|
|||
|
"len(pre_ids_to_restore)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 350,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"78 196 [19, 91, 86, 80, 149, 94, 96, 60, 78, 59, 48, 29, 122, 52, 11, 132, 72, 143, 21, 99, 172, 53, 92, 161, 134, 89, 77, 195, 35, 67, 63, 44, 123, 101, 128, 162, 84, 76, 10, 137, 152, 26, 27, 0, 46, 49, 190, 194, 120, 184, 133, 165, 126, 112, 65, 115, 90, 20, 159, 192, 154, 51, 32, 98, 151, 125, 93, 81, 107, 1, 116, 124, 182, 127, 23, 41, 121, 17]\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"(torch.Size([1, 196]), torch.Size([1, 78]))"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 350,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"\n",
|
|||
|
"d = pd.read_csv('st2/6644818/shuffle_info.csv', header=None)\n",
|
|||
|
"\n",
|
|||
|
"ids_keep = eval(d.loc[0][1])\n",
|
|||
|
"ids_restore = eval(d.loc[1][1])\n",
|
|||
|
"print(len(ids_keep[0]), len(ids_restore[0]), [ x for x in ids_restore[0] if x in ids_keep[0]])\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"ids_restore = torch.Tensor(ids_restore).type(torch.int64) # torch.Tensor([ids_keep[0] + ids_restore[0]]).type(torch.int64)\n",
|
|||
|
"ids_keep = torch.Tensor(ids_keep).type(torch.int64)\n",
|
|||
|
"\n",
|
|||
|
"ids_restore.shape, ids_keep.shape\n",
|
|||
|
"\n",
|
|||
|
"# ids_keep = [ x for x in range(14 * 14) if x not in pre_ids_to_restore ]\n",
|
|||
|
"\n",
|
|||
|
"# ids_restore = torch.Tensor([ids_keep + pre_ids_to_restore]).type(torch.int64)\n",
|
|||
|
"\n",
|
|||
|
"# ids_keep = torch.Tensor([ids_keep]).type(torch.int64)\n",
|
|||
|
"\n",
|
|||
|
"# show_image(torch.tensor(mine_img))\n",
|
|||
|
"\n",
|
|||
|
"# ids_restore, ids_restore.shape, ids_keep"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 352,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"MAE with pixel reconstruction:\n",
|
|||
|
"1024\n",
|
|||
|
"tensor([[125, 182, 133, 91, 99, 151, 107, 27, 93, 44, 115, 35, 10, 159,\n",
|
|||
|
" 1, 86, 92, 195, 116, 0, 154, 49, 84, 190, 123, 134, 121, 124,\n",
|
|||
|
" 65, 26, 76, 19, 162, 194, 59, 90, 23, 63, 51, 29, 41, 192,\n",
|
|||
|
" 132, 165, 101, 80, 127, 126, 21, 128, 137, 161, 32, 60, 78, 77,\n",
|
|||
|
" 89, 67, 11, 20, 17, 52, 152, 96, 184, 149, 72, 94, 143, 172,\n",
|
|||
|
" 122, 53, 46, 98, 48, 120, 112, 81]])\n",
|
|||
|
"tensor([[[ 1.0417, 0.7687, 0.1073, ..., 0.5065, 0.5881, 1.1361],\n",
|
|||
|
" [ 0.6540, 0.6927, 0.5497, ..., 0.6509, 0.6065, 1.6248],\n",
|
|||
|
" [ 1.2860, 1.1067, 0.9193, ..., 0.4753, 0.5549, 1.2062],\n",
|
|||
|
" ...,\n",
|
|||
|
" [ 1.5381, 1.5673, 1.4636, ..., 0.4356, 0.4163, 1.4357],\n",
|
|||
|
" [ 0.7640, 0.8398, 0.6108, ..., 0.6543, 0.6467, 1.4214],\n",
|
|||
|
" [-0.3706, -0.1278, -0.1562, ..., 0.5149, 0.7952, 1.8260]]],\n",
|
|||
|
" grad_fn=<GatherBackward0>)\n",
|
|||
|
"torch.Size([1, 50, 1024]) torch.Size([1, 79, 1024])\n",
|
|||
|
"torch.Size([1, 196]) torch.Size([1, 196])\n",
|
|||
|
"tensor([[160, 26, 174, 158, 178, 25, 36, 141, 4, 195, 125, 113, 14, 132,\n",
|
|||
|
" 137, 116, 191, 129, 11, 179, 133, 54, 6, 150, 190, 20, 105, 134,\n",
|
|||
|
" 56, 81, 37, 55, 9, 101, 153, 143, 188, 12, 90, 194, 117, 74,\n",
|
|||
|
" 10, 140, 168, 171, 176, 124, 164, 77, 173, 96, 82, 52, 146, 135,\n",
|
|||
|
" 157, 40, 49, 189, 46, 43, 76, 70, 34, 172, 111, 138, 166, 39,\n",
|
|||
|
" 169, 51, 84, 167, 185, 182, 152, 186, 66, 99, 67, 98, 91, 147,\n",
|
|||
|
" 161, 29, 47, 72, 114, 61, 41, 83, 53, 104, 27, 78, 64, 89,\n",
|
|||
|
" 170, 159, 71, 7, 30, 24, 94, 57, 31, 126, 106, 86, 65, 181,\n",
|
|||
|
" 3, 100, 139, 163, 13, 85, 175, 118, 131, 58, 162, 62, 48, 184,\n",
|
|||
|
" 128, 102, 32, 80, 23, 35, 87, 123, 19, 193, 165, 5, 155, 42,\n",
|
|||
|
" 21, 187, 60, 69, 112, 149, 107, 75, 108, 50, 28, 127, 110, 145,\n",
|
|||
|
" 63, 1, 79, 2, 97, 144, 109, 151, 121, 136, 183, 115, 119, 59,\n",
|
|||
|
" 154, 177, 33, 192, 130, 88, 8, 0, 22, 16, 38, 73, 18, 17,\n",
|
|||
|
" 93, 15, 95, 120, 122, 156, 148, 44, 68, 103, 180, 142, 45, 92]])\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNjg0IDMzNi45MTk4ODYzNjM2IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nJ1QTU+DQBS8v18xx/bgsl8sy9FaJXqrkngwHgxShBQIUO3f94FWbWNiYzaTt7N5783MBsv8rczy22SBizsKvlk2kELFKCBRMXZQSBgFSWY1OW+5bqZqjBOxir13/CAP6QvRmjpEQk8w0grj9ueY9jnu0SA4Z52BxSrGjmWSI2vdNBg6jF4+r3uFrEZwrbBssaIVOm4ofm4aOXUcTOJM8qPSsbBhHFujvPIwKuJlX4aymhYpBVfc55Cup+zpMz1g1vZlUTZPmzkekd7QZUofcibSwu7n7X8z0+j078y/iE3x9cnxrXPCa2Wk4/T69Pj9HFoJ662JQszyrG2Gbf+abcu2OfgRegfzkYcSCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMjY4CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDE2MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMjE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIO
|
|||
|
"image/svg+xml": [
|
|||
|
"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n",
|
|||
|
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
|
|||
|
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
|
|||
|
"<svg xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"684pt\" height=\"336.921136pt\" viewBox=\"0 0 684 336.921136\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">\n",
|
|||
|
" <metadata>\n",
|
|||
|
" <rdf:RDF xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n",
|
|||
|
" <cc:Work>\n",
|
|||
|
" <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
|
|||
|
" <dc:date>2024-02-20T23:49:44.104486</dc:date>\n",
|
|||
|
" <dc:format>image/svg+xml</dc:format>\n",
|
|||
|
" <dc:creator>\n",
|
|||
|
" <cc:Agent>\n",
|
|||
|
" <dc:title>Matplotlib v3.8.2, https://matplotlib.org/</dc:title>\n",
|
|||
|
" </cc:Agent>\n",
|
|||
|
" </dc:creator>\n",
|
|||
|
" </cc:Work>\n",
|
|||
|
" </rdf:RDF>\n",
|
|||
|
" </metadata>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <style type=\"text/css\">*{stroke-linejoin: round; stroke-linecap: butt}</style>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <g id=\"figure_1\">\n",
|
|||
|
" <g id=\"patch_1\">\n",
|
|||
|
" <path d=\"M 0 336.921136 \n",
|
|||
|
"L 684 336.921136 \n",
|
|||
|
"L 684 0 \n",
|
|||
|
"L 0 0 \n",
|
|||
|
"z\n",
|
|||
|
"\" style=\"fill: #ffffff\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_1\">\n",
|
|||
|
" <g clip-path=\"url(#pec84f9b4dd)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAAacAAAGnCAYAAAAT75iYAAEAAElEQVR4nOz9y5JkSZIliB1mkavmEVmP7ukaFDWa0A0iLEDYDmGBX8AKv4GfwApfh0WvQENYgLAYDDW6MD2orqqszHAzvcKMxTksImpuERmRFa6W6aYc4e72UL16HyL8PHzY/q//x3+fboZPlw5zh7vDDTAkLBzIBu+Ad8AaYJ5ICwCJDsBgfL05YE8wB9wBcwPcAOiPGWCOtAPhB/6T/1v8zr9H1u+/kqT+NSQaAn/r/4B/479FsyvcBn+fALLBYLxGM7TmQBoyAEQCI4EcQJw6HmBPHdYdiERGYpwnkIC1A94Ml4sj0nE9Hf/l/A3+h+tfI2AI+DzGQx7yx0pGAJ8/Y/yn/4TzP/5H5DiRcSKQCANOAwIAUnus8R8H1zp6g5nBDHAELGNu12aJtj4J4fxdGw5Lgx0X2F/+Ney/+z/APn0HHJevf70A8uUZ+fwZv/uP/zeMf/ivsOsJg/STrvXlTPzwkjgDuAZwZuJEIJBIAB68Bj+uMEu0MFgaehoyDOfJewAHzBKORLaO7B1/87//7/CX/+Hfw5+e4M2/+jUjBnC9ov+//5+4/L/+e/TrFf08cbkYWnfEE8/zeHZ4ALgMmCeOpwGTzrXhwIsjrJbCgGFQxwNo7nBzYPAjT5wIAGc470MDLPkAMhKZiQGtLTN+Tp4AEsfl4PcBjBP44fcAzgY8H+gX4PgLYODEyMHnZUA2IC2BK1Xs+QJkGvpS3wkkzyAzYZZIAyxLhdqNGck6cn2AATCZGjMtcsPS/nw/37d95p1VtO1/ss7bePNvXvT2eSUMBt4bN4OZIzPm27LsMHg7M5O3Ffnm8R7ykF9bDAYH4MlNn9s+rS8TkIuUP7IDDbVmTf+llPtUSD+yR+4iy+tE7coSM5679Cm/Sn1ttR/5S9NB5rt3BYGUAs/lY3/Vi/ppKcMQmYg0WNZF8VyXbk061b70kI4wNW7C5i8SQCB13wDkuh9LjeetCtPX+xKor6faV3ySloAnzBncWMyn8uX9tGRgk0A3JNwAZ4iAkfSkwhMOQ/MrrHUYuqIhwMDoyp1Xn5BytitgDeYXnpWDijsCDofB5wK5tQZfX+omOAINAU/afreOGe4BKPchm8ECsKFbaIZMPUY33uh+wHtHnFdeo3V+Vmt8QBmIMJwwjLzv9T7kA4m8fG1DNLj2W8KTK5rKIpAOpOs9GYwgpkflUykvtZ0wBCwcWUoHBrPGbMm7qeukcpZD3NKnAQlLeONrzgiMDIwIMN8DKV9DH5UlspncgTEKW8o3AQ+4lKvXrbrzZccAziuQIxEjkedAS6A3oHUgvXRr8Ilcee7NqbPgOQ0Gb5vzOJnIFry2xogSV4cl0GwADrRmiABG0IAl+HvLpH60hDXpxKboWyvwUFSUfkW7JPySiDMZ0nKF0kbyIcIaUAFpL2tJg7F9LW+hHpjZUtJWnob5sqrTw8gv1msZo3ks/bx8sxsn6CsKP56bbX2eAzKaQM6Fd3MuZUzrHrkBjdedUckCzDfadDeUR4Evr+QhD/kKsiIa5/40RU7AjVLG2sawlA85owqbqZ7yxMtEcWtvrrFeOX9/Z1kBjrI1TmVXoYLZ0kW7juE3Ob9O0CavX2Lt1Vy6wGw75r0lGbNG5npWyWpDJg2Hrh6pZ8TAyZCVmvM6Di8h06AABhGpCIcXfZPXMnBNWcI9EVpM0mqYKaiKMYNvyjBk0mDBgWwJHAk0nrgZEMFo0GaohS2aS3SYT2+Kz8Tm4pyrtx6yMWFAm2gwVzIyY6YEkakQkccqQ2ct4RZwWXjbbsBdJQcsr7yVBhg6gIawF8BieUUW240PwIc2P+SuOCIDeQ4+EBi8O8yNXgQciAtTLGYwO2BljR/ykF9L5AilGzwMXbmcdLlcmRiKqJAOxDIn3elQtnSk2VRwTFsnwulyOgwW9JYrcsrlot79cgHqOMuEZVBxdp49012At+DW9XqXKw2WpabqVmyuKbMmblSGsRkn94D3E2Zl6u+0kcuOZiIyaKAAXmcYRhjCymfmRSUMaG2qcGvUv5mMvHRAGoc0YMxqnD5yGShTlOweQAazR4o8zTDtQ/CQGKecmGAWCcdAtkQezMZl4zF9GOIE4kWl0G7Up0pbAkCfHogidJdL5a6HtEUWK4jPGfYYVoRgGFLsFUlg1XXm9zbD6PuK8pxmCBjaPMekUUruaK/wLpoW8phH4O1Q5ERXhI/ReXybBWbdD1Pg6qY860Me8pUkleZS7YD7kmvZLKiQ5fm7wD8r/qDc/uT2tfXzfPXa95CE7Kwz6jMDTBraVIsxFtRxmMERGKZIA8CowEh1dbrbOSOBhEE6mA55/cn3Mch10WVbI6hTMhMZ0qWNuqiSNowkV5A47WllrwyztlOR0R4wGMBjR32OanVZ9fl545EuS799VmWnAkwzuur6ETxLawZvNB2mMkkL4z0fPFQ3WWLrxpMFVB0yGBosu4zJBogwelYu42Q4YEgALzq7AZjD0JTesnmjtF0UOt//QScMURGgJYAhv0rRIBqQhhh2GxHScvM+aWdkBpdDVz66N1qwvMAy4TYUQgc8fvq8HvKQP0qU41kKI+YaJiqPrqV7YBgdKY9OIA+6tifX+V78N2U8HOVQUsr3rMz/e1wuQN8xOg1GwuCjK6vHiKALmkaXGTgxWPsFFWB4IpQpOaZT2pg+w0qFTsAUHC19M1DvY6QiExZAZFBfVUquxSybMLhYxon3p3KXFfEkrzkBb401NaX1Khlmw4EExghGNQPAoENAIx5IHzJOuje54mo+qwDS0IIBzjlkrA4TShLAAdXz+MyG1G53pxVu3mZEQKSPimMV8mbKtyiLaROhWpuCdSXbwjBogTSZOwjOWYHjnuC7kxS8UgvZKvmuqKqesKXLW+H1mrsAIUqNmDwOgIW8qjcByBw3SL0dGfOQh/zqYoY0m4o7X1kNh6Gl0tBhSGMen0i+RPq5oiXUGqbHHMZ0PFQERwoV5oHyuAz3X9tldGeNzNdvlJVj9icZZTUsg9NkXFzZk6EaU1MKkI4l0/lVZl6IvRWh3FPK98jkdYy0G2dfxYdZEl9Pkv9G6n6YKfljiNAxvMxI8EhyPtxncATPgo7TwZmgGnc0S74zjRFc6VYA7hXRSgUGI6bmiTjo1IfJnDXqXGe3Drp5wttunOiNzOzjHjnMJCajrKzrtyHjFIqY6qqU9tsSgpi+yfsoa9aA2gQnzdyjCaWn+MlCkVPVpur+mMuIQeG+E8Hoq1aXwbhUe/kmh/uQh/yqoo2dZaBm6qZqC0CTt3/NVMqKaef0QNpA4tx8RKFq5T1HS3rZN45kItuA+bi7YaozaJuBsO2vSmu1Rji1b65wm/9OuCIMydyJAZ2ZeunfumbMaECpouWQv4OUOT6lp1zXLOT4iiy3CI9Xyt+4A60xUvQsUIUMR8Hsg8dqBYBkVpjHd0ZvaAa00nk0KpFgFMVwe54f5JybojH3QPOAXfSe4cjYUqdSyZ1noKRWOmHS2PPXmJGSwWHpgkxXlMGwkt83mICsBoMv87qQetmVbrhDA9sXonReOloFdtPH8HqJ/g0ZVyLtKuWZAVgsc5P13jQ+mARMhg7BxEiueHv7gIc85NeRubIMN3Bvx3IYy7Q4EmZXRRZMBTlsZa5LoZgj1DZiWfsZCB/KkHhp7Xe87pxfhRQaFW3pKxqYUBRFpxrwSj8lNUAdJ+WwXrzQcZj/GhIeuaUz73zhaYhwNJlbgNc5pGrcDObECjCyVVigyK8VIs4MYUGYQAhdVym9SuuBmrLUPBAL4CbjzXWW6I3rKODIAIbWWtmEPfvbBMV351risfQsTECIzBmxdTjrQp4Fd65UXi77A14UC4dtRUb8fDktBsz0nY6XTnDA7J8AmOIriPU9H7A8pTQZzwo9p6s5PTCmOuqyfRZEEwkTsqUelhK4OkZgAixuPhf3vdSHfCzZ9+nMBnAdW6YQs7YcRL8qG8C6g9X6TWUDsLICNE42g4bZNWVx96hpF9vcyq1aRicRdf7BCMiYOjIpwzbRixVd0BFlYz3YmwOSwpyhBAo
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"text_1\">\n",
|
|||
|
" <!-- original -->\n",
|
|||
|
" <g transform=\"translate(129.479318 19.3575) scale(0.16 -0.16)\">\n",
|
|||
|
" <defs>\n",
|
|||
|
" <path id=\"DejaVuSans-6f\" d=\"M 1959 3097 \n",
|
|||
|
"Q 1497 3097 1228 2736 \n",
|
|||
|
"Q 959 2375 959 1747 \n",
|
|||
|
"Q 959 1119 1226 758 \n",
|
|||
|
"Q 1494 397 1959 397 \n",
|
|||
|
"Q 2419 397 2687 759 \n",
|
|||
|
"Q 2956 1122 2956 1747 \n",
|
|||
|
"Q 2956 2369 2687 2733 \n",
|
|||
|
"Q 2419 3097 1959 3097 \n",
|
|||
|
"z\n",
|
|||
|
"M 1959 3584 \n",
|
|||
|
"Q 2709 3584 3137 3096 \n",
|
|||
|
"Q 3566 2609 3566 1747 \n",
|
|||
|
"Q 3566 888 3137 398 \n",
|
|||
|
"Q 2709 -91 1959 -91 \n",
|
|||
|
"Q 1206 -91 779 398 \n",
|
|||
|
"Q 353 888 353 1747 \n",
|
|||
|
"Q 353 2609 779 3096 \n",
|
|||
|
"Q 1206 3584 1959 3584 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-72\" d=\"M 2631 2963 \n",
|
|||
|
"Q 2534 3019 2420 3045 \n",
|
|||
|
"Q 2306 3072 2169 3072 \n",
|
|||
|
"Q 1681 3072 1420 2755 \n",
|
|||
|
"Q 1159 2438 1159 1844 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 3500 \n",
|
|||
|
"L 1159 3500 \n",
|
|||
|
"L 1159 2956 \n",
|
|||
|
"Q 1341 3275 1631 3429 \n",
|
|||
|
"Q 1922 3584 2338 3584 \n",
|
|||
|
"Q 2397 3584 2469 3576 \n",
|
|||
|
"Q 2541 3569 2628 3553 \n",
|
|||
|
"L 2631 2963 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-69\" d=\"M 603 3500 \n",
|
|||
|
"L 1178 3500 \n",
|
|||
|
"L 1178 0 \n",
|
|||
|
"L 603 0 \n",
|
|||
|
"L 603 3500 \n",
|
|||
|
"z\n",
|
|||
|
"M 603 4863 \n",
|
|||
|
"L 1178 4863 \n",
|
|||
|
"L 1178 4134 \n",
|
|||
|
"L 603 4134 \n",
|
|||
|
"L 603 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-67\" d=\"M 2906 1791 \n",
|
|||
|
"Q 2906 2416 2648 2759 \n",
|
|||
|
"Q 2391 3103 1925 3103 \n",
|
|||
|
"Q 1463 3103 1205 2759 \n",
|
|||
|
"Q 947 2416 947 1791 \n",
|
|||
|
"Q 947 1169 1205 825 \n",
|
|||
|
"Q 1463 481 1925 481 \n",
|
|||
|
"Q 2391 481 2648 825 \n",
|
|||
|
"Q 2906 1169 2906 1791 \n",
|
|||
|
"z\n",
|
|||
|
"M 3481 434 \n",
|
|||
|
"Q 3481 -459 3084 -895 \n",
|
|||
|
"Q 2688 -1331 1869 -1331 \n",
|
|||
|
"Q 1566 -1331 1297 -1286 \n",
|
|||
|
"Q 1028 -1241 775 -1147 \n",
|
|||
|
"L 775 -588 \n",
|
|||
|
"Q 1028 -725 1275 -790 \n",
|
|||
|
"Q 1522 -856 1778 -856 \n",
|
|||
|
"Q 2344 -856 2625 -561 \n",
|
|||
|
"Q 2906 -266 2906 331 \n",
|
|||
|
"L 2906 616 \n",
|
|||
|
"Q 2728 306 2450 153 \n",
|
|||
|
"Q 2172 0 1784 0 \n",
|
|||
|
"Q 1141 0 747 490 \n",
|
|||
|
"Q 353 981 353 1791 \n",
|
|||
|
"Q 353 2603 747 3093 \n",
|
|||
|
"Q 1141 3584 1784 3584 \n",
|
|||
|
"Q 2172 3584 2450 3431 \n",
|
|||
|
"Q 2728 3278 2906 2969 \n",
|
|||
|
"L 2906 3500 \n",
|
|||
|
"L 3481 3500 \n",
|
|||
|
"L 3481 434 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6e\" d=\"M 3513 2113 \n",
|
|||
|
"L 3513 0 \n",
|
|||
|
"L 2938 0 \n",
|
|||
|
"L 2938 2094 \n",
|
|||
|
"Q 2938 2591 2744 2837 \n",
|
|||
|
"Q 2550 3084 2163 3084 \n",
|
|||
|
"Q 1697 3084 1428 2787 \n",
|
|||
|
"Q 1159 2491 1159 1978 \n",
|
|||
|
"L 1159 0 \n",
|
|||
|
"L 581 0 \n",
|
|||
|
"L 581 3500 \n",
|
|||
|
"L 1159 3500 \n",
|
|||
|
"L 1159 2956 \n",
|
|||
|
"Q 1366 3272 1645 3428 \n",
|
|||
|
"Q 1925 3584 2291 3584 \n",
|
|||
|
"Q 2894 3584 3203 3211 \n",
|
|||
|
"Q 3513 2838 3513 2113 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-61\" d=\"M 2194 1759 \n",
|
|||
|
"Q 1497 1759 1228 1600 \n",
|
|||
|
"Q 959 1441 959 1056 \n",
|
|||
|
"Q 959 750 1161 570 \n",
|
|||
|
"Q 1363 391 1709 391 \n",
|
|||
|
"Q 2188 391 2477 730 \n",
|
|||
|
"Q 2766 1069 2766 1631 \n",
|
|||
|
"L 2766 1759 \n",
|
|||
|
"L 2194 1759 \n",
|
|||
|
"z\n",
|
|||
|
"M 3341 1997 \n",
|
|||
|
"L 3341 0 \n",
|
|||
|
"L 2766 0 \n",
|
|||
|
"L 2766 531 \n",
|
|||
|
"Q 2569 213 2275 61 \n",
|
|||
|
"Q 1981 -91 1556 -91 \n",
|
|||
|
"Q 1019 -91 701 211 \n",
|
|||
|
"Q 384 513 384 1019 \n",
|
|||
|
"Q 384 1609 779 1909 \n",
|
|||
|
"Q 1175 2209 1959 2209 \n",
|
|||
|
"L 2766 2209 \n",
|
|||
|
"L 2766 2266 \n",
|
|||
|
"Q 2766 2663 2505 2880 \n",
|
|||
|
"Q 2244 3097 1772 3097 \n",
|
|||
|
"Q 1472 3097 1187 3025 \n",
|
|||
|
"Q 903 2953 641 2809 \n",
|
|||
|
"L 641 3341 \n",
|
|||
|
"Q 956 3463 1253 3523 \n",
|
|||
|
"Q 1550 3584 1831 3584 \n",
|
|||
|
"Q 2591 3584 2966 3190 \n",
|
|||
|
"Q 3341 2797 3341 1997 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-6c\" d=\"M 603 4863 \n",
|
|||
|
"L 1178 4863 \n",
|
|||
|
"L 1178 0 \n",
|
|||
|
"L 603 0 \n",
|
|||
|
"L 603 4863 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-72\" x=\"61.181641\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-69\" x=\"102.294922\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-67\" x=\"130.078125\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-69\" x=\"193.554688\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6e\" x=\"221.337891\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-61\" x=\"284.716797\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6c\" x=\"345.996094\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"axes_2\">\n",
|
|||
|
" <g clip-path=\"url(#pe12bf1484b)\">\n",
|
|||
|
" <image xlink:href=\"data:image/png;base64,\n",
|
|||
|
"iVBORw0KGgoAAAANSUhEUgAAAacAAAGnCAYAAAAT75iYAAEAAElEQVR4nLz967LmOK4lCC5Q2h55qqsvYzbzIPMe82DzpNNmZXOp7qqTme77EzE/cFugqG9vj4xTitiuTxLFCwhgASRIyf/z//F/VwWgh0COgfPHCREAABQTgGIcA4f/ySH+TDFVEceQgY/jgACAKgSwPwF0ABMKBSAfB8Yx8Ld54YS/HwWi8oO/338sv/m255GPNeqZNYTIwAvABYEcB+Q4MI4TEME1FaqKOS8IgOM4MIZgjAFVhU7FdV24rgkRwZCBQwZEBPPzgjotoilTJ1562Y1j4Acm/tCX1U96O6OWeTfp6vd1Sa/6mHY52btz89x6fcki6qHtuu4vRane6qZqj1WB63VB59KGNU/KQ1vd/Kw9bb2D9l6kjb6y8z4t583P272WBg/3+V3guibmRLtXf3SN/XNElyxdymIRMnWKGB8C+PjjA//pP/8bpgguAHoe0OOAir0657QsxN4tGQ6pNHkdAA4RDBGIKoQrmIXb3/HjxHxd+Pv//t8wrwkntifTTF6McWvK/obcz9YOgcoAxgEcB/72v/3PkPPEr+sFBTDOI7Ob18R1XZTpgCowp2JOhc4JADgACAQnhr37Cv4pfkgdeArkAP6P//p3/PPff6aOG40svd13VSVMQqOzCA7vlzifBzAGcA7gOATnIfjbf/5P+Lf/5X/COAA5FDKAMdTpU0QUEcgYOD/O6uM5oaSTD6r3MMJAdGJ4W6Gf1scfwFTB5yVQDCiGVWwMTBXjeZc1YyzBOIyW11TMOXG9Xik/AoHgACagl+slrxdc9yoUOJy31d4CnFDRwRpSIEJgFcLVFbFQN2zVrm4eFDX3t28/vnc8FSXeM9UGAeuDVnLQgZWKPxORau9OkLABE04u/EJPUG3uGcuGRk9p71XbP+d6VBbS3xFZ7i+Fy71ufCkonhJZ8+R3ej2+8856iEjVZz1vytjnEW16KPYLXpSQFfleeU+HPvx9672doee0gGgZHmuORDPcUtwboTC5WB8trFS1lwDBpTWye/khT657KBaRRuTSZ1RXkkdxPWdNlaWou/binJM8svar4mtg2uUf9zb3l25SVUwFLhhgKIAZ+p2oakAewKoLT3heDvhVurZaRKszT+W8l9puaK3ZN10mGEsaMTfUUVWcUcBxHpAhVZgAYwyMQ1zpKi5MYAJjCMS9iqihQDChva5BAA2wi0oo9TJux+3WnxDwp2NO4DXdABCBXkhQAQZkDAgA1WnIf8E9JadHtJmYBiJAkEKBS90CANNTIDq8LatU17Vknkvj2eMQqTei/MiJ3hVVqBDY6CSg0ewYVRO8rLNbOc1Dyzw9K1GIA3ykjfKHOPCP4mYrgyQCAuiEZPlUD0VdD3HlEgLj+cx4p2gmkHyuqHeH52XSVSKgcHLMRlqzxIPkQr2TPzx/yiTpLlEftDa1g6Uw2rvc/urI8r0uFxTTzW8dlteE9T8GkjaqikvNq5BDIDIQYg+dzbiypi418zbOa7ql+8Z2WBvl17e27gAK1Rf8WzEBFVw6MXRgDEndosHTAhzHgE7F9FGD4DERQFyGR2jeqYVzMHqZJ4wEIhmWzxA1enkjhuPuQxO+OIyhoo3TisZ0PptqMjwV+DUV8zVxiOAYYuXCz66bggYC2AiQIHW6HKWgjCQGSRJuDRQHFCIuN2KjP1MVLx0IcGbgS+clwFHNM+VjnINQzvStjJAtAaSDWfyEwD1a75UEkCC+VAYCSbStXkRWjlQgMYIgvSzvUfM8+lHC259Ut90erTncr1NgFsmphkHDFAAwPcEQEpzQlHBrQgDRe0Wyo0J5ybC6C19Pq8vt9Q5UTYlvU9yvn94lXUp0WfNW3HsEN9B7V58EzChfpXjHn9+9vxJMoXokQCiBDKTX814BgNIkH2aeUS81K9IVWIFI0YeBMvo06lPaUr3OQnV1JUV8sJbfPOqqJGdbz/R+bs12AyU6eIpApc5hHU9QV5BCiDyiPM26KwGOtKrmOwIfSpIONCtIPTDuE//eaENVjPtRnoEv0itQolEioAhkKDCpltGnIECSyr9+aKkKB/cQnyFWoIjCydDbvNb7N47VQEn8BPAKhaKyYw9mKW8F69swPQVDzZAZbq+JM0d6WCNoKkVjR2iV8NLk3o+RT2sBpYj+T/2g9I4TGprDlKe7EJgOHKVQrU+tjw2Vw2mQsMSiYTJSJQQhElWDOIf36rBKFWJ/49h29EPvy50Y1ShA5ADGAfURZ1Ufjw62TgYc/iohOrjj6Z6MugmkNScpyNP7wkyxADrqLap+sRpbsJSiaIwSzhUAGlCJCaLquOsKAuDMWat8SakPhiWPIXLxPMKTKaXuNB+jlAbgnopAMckwj/KQ7zaPSkm5C9LbWcVTq9ML1Ia3aXg93QJhAEyFBAYmLSsv3kXUvdqzvlNKmjy57A/t1UYBZNo9T5pHi+zRdwqT02sIdAQw2e+c5xVASBGkRhYCsHwUvMlM7+0UmAUuwAsTOkiBN55A9ZMu13H7SfQjDQGGwukPG7GRAW/naAY1BDnHCUXoOnvHE6oiPaV4joHkuxq7Egx1nSVq3hTMCz/iPTVdmID0JepWExe11A4GX0B8+O6AjBPTVegBYIhCMK16znbHcD0+YujyXm423XWzjRaFB6rekIlLXwZC47CGjqPqpgVDPB3EnvZtPlr62RQtoHNYXu6dxiDjqTISRIppDb3IybAONqRyRndlRu9G2+we0n0uFbtQKG+/4+6HgxTAYwLunFQEDg4KaPjRrQcDxIwOvWZhM0i13xuTih5lB+T4b1gZY5XkXd1DyXbguCmrtzmEp8CNV+8jfpmUadzWRZlKmFfo3bNeU5bBfUkPzyaPGDNjb3PJO4fpFg+qpQkwSTrYL0kadq/r3jZQvk/vmGKvYTpkZQMc4PSWoHv0QlSsdbn0tkO9vfWI6dl+JT8XnyE8pjFMWY/hXlMNtYTclswST1E5PahoVWs8XxX5lYxpq5+fkyH68cYpb/W6eTQNiMTb7uUy7UhBDhlZj+i7UI72avyH0ncqmD7knKDn4G6BCOJjb9GYaOuDxtoAdHuYlkEl0J7C21r6NIwNce1Sek46bW46tXgjdcJ0IwcxLePwMARzio8qVSeYFnQJSQPYRxFghuTU4uviO5ghMKUN+Zsi9jyzboIzGzPoTwTALObzOSZxpGNISJSO/6Qqk8ppZyaxFfmd4zeT9xfrULXhvDmjnvDx5OIsi3gp4DEk6wItgWoCiDo9nHl8dB82Pk4WhZtZd+Hv9dWF2UJRhweUyozb1XIoZk8FqWIRWARUq2Dx0E4NQ5Uyy3ps+qEBZRThDChA5RUyHdmubRECJnQwKQ8qSVmGQPLkAi50HiPe9bZFHkWkBoSZNwNH9n+fT9JQLDkpV3SgjukAtTl0OT8/J7AWwTVOwD12ddacQc9h/ZpTxKl+cOPrgqYyvarcUEzwoZ4RrFVgtGb1JPpru3R5RmfTKVoKUMRAmOebIg0x/ZAaz7GBGovECxAwQJIYzPGKGI8ODSBwUHYPKuafu2z1tq7Ni8EHbhr/FUAhRYQ0T3pQKofNJ4bH6inERyBCFwc9qkrKuNc7QhU6BKI1eoQY1RrDIkCDyDlGHB3jeZCLZh6Y6UstZk0c0Uwl2TiVAdWJGZrTaZHDejKGDdeNKGWkxaWojkjXNYiBGLqr0f4YexcPww7ACmUjQyCTLJOiVnKp0D9J5OyQvb+0mc3yLLLCbjEfrQ1taMJLmNojizhUfBWu6IQgnUdI2sSh1Duy5ZCu2FcPoQ8H7VqdTa3M1vuzngunWwWLzmndJr/yMOGSnp61aZXHcY7yeN4eG+VmOWrngkg347J7Q2ubMnghwFh6zs2TouFKSQ3WvTFrq4N/vko+nUReSC/ssbFeXW73im+NFwSmXMYwxZWKen2JBy83PA3JwIj6C/lBGgKhkGQIdMzUUYG54KK/YNlIc3uX609nQYAibI5BDo9qgJ11IEEsh2CRTLku90gAduWyynXKKxvpLP87+VmarJE/PVvVQDTJ/pTKzRQ1jImKrItgJ57/mT4
|
|||
|
" </g>\n",
|
|||
|
" <g id=\"text_2\">\n",
|
|||
|
" <!-- reconstruction -->\n",
|
|||
|
" <g transform=\"translate(466.838182 19.3575) scale(0.16 -0.16)\">\n",
|
|||
|
" <defs>\n",
|
|||
|
" <path id=\"DejaVuSans-65\" d=\"M 3597 1894 \n",
|
|||
|
"L 3597 1613 \n",
|
|||
|
"L 953 1613 \n",
|
|||
|
"Q 991 1019 1311 708 \n",
|
|||
|
"Q 1631 397 2203 397 \n",
|
|||
|
"Q 2534 397 2845 478 \n",
|
|||
|
"Q 3156 559 3463 722 \n",
|
|||
|
"L 3463 178 \n",
|
|||
|
"Q 3153 47 2828 -22 \n",
|
|||
|
"Q 2503 -91 2169 -91 \n",
|
|||
|
"Q 1331 -91 842 396 \n",
|
|||
|
"Q 353 884 353 1716 \n",
|
|||
|
"Q 353 2575 817 3079 \n",
|
|||
|
"Q 1281 3584 2069 3584 \n",
|
|||
|
"Q 2775 3584 3186 3129 \n",
|
|||
|
"Q 3597 2675 3597 1894 \n",
|
|||
|
"z\n",
|
|||
|
"M 3022 2063 \n",
|
|||
|
"Q 3016 2534 2758 2815 \n",
|
|||
|
"Q 2500 3097 2075 3097 \n",
|
|||
|
"Q 1594 3097 1305 2825 \n",
|
|||
|
"Q 1016 2553 972 2059 \n",
|
|||
|
"L 3022 2063 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-63\" d=\"M 3122 3366 \n",
|
|||
|
"L 3122 2828 \n",
|
|||
|
"Q 2878 2963 2633 3030 \n",
|
|||
|
"Q 2388 3097 2138 3097 \n",
|
|||
|
"Q 1578 3097 1268 2742 \n",
|
|||
|
"Q 959 2388 959 1747 \n",
|
|||
|
"Q 959 1106 1268 751 \n",
|
|||
|
"Q 1578 397 2138 397 \n",
|
|||
|
"Q 2388 397 2633 464 \n",
|
|||
|
"Q 2878 531 3122 666 \n",
|
|||
|
"L 3122 134 \n",
|
|||
|
"Q 2881 22 2623 -34 \n",
|
|||
|
"Q 2366 -91 2075 -91 \n",
|
|||
|
"Q 1284 -91 818 406 \n",
|
|||
|
"Q 353 903 353 1747 \n",
|
|||
|
"Q 353 2603 823 3093 \n",
|
|||
|
"Q 1294 3584 2113 3584 \n",
|
|||
|
"Q 2378 3584 2631 3529 \n",
|
|||
|
"Q 2884 3475 3122 3366 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-73\" d=\"M 2834 3397 \n",
|
|||
|
"L 2834 2853 \n",
|
|||
|
"Q 2591 2978 2328 3040 \n",
|
|||
|
"Q 2066 3103 1784 3103 \n",
|
|||
|
"Q 1356 3103 1142 2972 \n",
|
|||
|
"Q 928 2841 928 2578 \n",
|
|||
|
"Q 928 2378 1081 2264 \n",
|
|||
|
"Q 1234 2150 1697 2047 \n",
|
|||
|
"L 1894 2003 \n",
|
|||
|
"Q 2506 1872 2764 1633 \n",
|
|||
|
"Q 3022 1394 3022 966 \n",
|
|||
|
"Q 3022 478 2636 193 \n",
|
|||
|
"Q 2250 -91 1575 -91 \n",
|
|||
|
"Q 1294 -91 989 -36 \n",
|
|||
|
"Q 684 19 347 128 \n",
|
|||
|
"L 347 722 \n",
|
|||
|
"Q 666 556 975 473 \n",
|
|||
|
"Q 1284 391 1588 391 \n",
|
|||
|
"Q 1994 391 2212 530 \n",
|
|||
|
"Q 2431 669 2431 922 \n",
|
|||
|
"Q 2431 1156 2273 1281 \n",
|
|||
|
"Q 2116 1406 1581 1522 \n",
|
|||
|
"L 1381 1569 \n",
|
|||
|
"Q 847 1681 609 1914 \n",
|
|||
|
"Q 372 2147 372 2553 \n",
|
|||
|
"Q 372 3047 722 3315 \n",
|
|||
|
"Q 1072 3584 1716 3584 \n",
|
|||
|
"Q 2034 3584 2315 3537 \n",
|
|||
|
"Q 2597 3491 2834 3397 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-74\" d=\"M 1172 4494 \n",
|
|||
|
"L 1172 3500 \n",
|
|||
|
"L 2356 3500 \n",
|
|||
|
"L 2356 3053 \n",
|
|||
|
"L 1172 3053 \n",
|
|||
|
"L 1172 1153 \n",
|
|||
|
"Q 1172 725 1289 603 \n",
|
|||
|
"Q 1406 481 1766 481 \n",
|
|||
|
"L 2356 481 \n",
|
|||
|
"L 2356 0 \n",
|
|||
|
"L 1766 0 \n",
|
|||
|
"Q 1100 0 847 248 \n",
|
|||
|
"Q 594 497 594 1153 \n",
|
|||
|
"L 594 3053 \n",
|
|||
|
"L 172 3053 \n",
|
|||
|
"L 172 3500 \n",
|
|||
|
"L 594 3500 \n",
|
|||
|
"L 594 4494 \n",
|
|||
|
"L 1172 4494 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" <path id=\"DejaVuSans-75\" d=\"M 544 1381 \n",
|
|||
|
"L 544 3500 \n",
|
|||
|
"L 1119 3500 \n",
|
|||
|
"L 1119 1403 \n",
|
|||
|
"Q 1119 906 1312 657 \n",
|
|||
|
"Q 1506 409 1894 409 \n",
|
|||
|
"Q 2359 409 2629 706 \n",
|
|||
|
"Q 2900 1003 2900 1516 \n",
|
|||
|
"L 2900 3500 \n",
|
|||
|
"L 3475 3500 \n",
|
|||
|
"L 3475 0 \n",
|
|||
|
"L 2900 0 \n",
|
|||
|
"L 2900 538 \n",
|
|||
|
"Q 2691 219 2414 64 \n",
|
|||
|
"Q 2138 -91 1772 -91 \n",
|
|||
|
"Q 1169 -91 856 284 \n",
|
|||
|
"Q 544 659 544 1381 \n",
|
|||
|
"z\n",
|
|||
|
"M 1991 3584 \n",
|
|||
|
"L 1991 3584 \n",
|
|||
|
"z\n",
|
|||
|
"\" transform=\"scale(0.015625)\"/>\n",
|
|||
|
" </defs>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-72\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-65\" x=\"38.863281\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-63\" x=\"100.386719\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"155.367188\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6e\" x=\"216.548828\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-73\" x=\"279.927734\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-74\" x=\"332.027344\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-72\" x=\"371.236328\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-75\" x=\"412.349609\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-63\" x=\"475.728516\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-74\" x=\"530.708984\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-69\" x=\"569.917969\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6f\" x=\"597.701172\"/>\n",
|
|||
|
" <use xlink:href=\"#DejaVuSans-6e\" x=\"658.882812\"/>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" </g>\n",
|
|||
|
" <defs>\n",
|
|||
|
" <clipPath id=\"pec84f9b4dd\">\n",
|
|||
|
" <rect x=\"7.2\" y=\"25.3575\" width=\"304.363636\" height=\"304.363636\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" <clipPath id=\"pe12bf1484b\">\n",
|
|||
|
" <rect x=\"372.436364\" y=\"25.3575\" width=\"304.363636\" height=\"304.363636\"/>\n",
|
|||
|
" </clipPath>\n",
|
|||
|
" </defs>\n",
|
|||
|
"</svg>\n"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1200x1200 with 2 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
" def my_masking(self, x):\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" Perform per-sample random masking by per-sample shuffling.\n",
|
|||
|
" Per-sample shuffling is done by argsort random noise.\n",
|
|||
|
" x: [N, L, D], sequence\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" N, L, D = x.shape # batch, length, dim\n",
|
|||
|
" len_keep = 14 * 14 - ids_resotre.shape[-1]\n",
|
|||
|
"\n",
|
|||
|
" print(D)\n",
|
|||
|
" \n",
|
|||
|
" # keep the first subset\n",
|
|||
|
" # ids_keep = torch.Tensor([[ x for x in range(14 * 14) if x not in ids_restore[0] ]]).type(torch.int64)\n",
|
|||
|
"\n",
|
|||
|
" print(ids_keep)\n",
|
|||
|
" \n",
|
|||
|
" x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))\n",
|
|||
|
"\n",
|
|||
|
" print(x_masked)\n",
|
|||
|
" \n",
|
|||
|
" return x_masked # , mask # , ids_restore\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"def forward_encoder(model, x):\n",
|
|||
|
" # embed patches\n",
|
|||
|
" x = model.patch_embed(x)\n",
|
|||
|
"\n",
|
|||
|
" # add pos embed w/o cls token\n",
|
|||
|
" x = x + model.pos_embed[:, 1:, :]\n",
|
|||
|
"\n",
|
|||
|
" x = my_masking(model, x)\n",
|
|||
|
"\n",
|
|||
|
" # append cls token\n",
|
|||
|
" cls_token = model.cls_token + model.pos_embed[:, :1, :]\n",
|
|||
|
" cls_tokens = cls_token.expand(x.shape[0], -1, -1)\n",
|
|||
|
" x = torch.cat((cls_tokens, x), dim=1)\n",
|
|||
|
"\n",
|
|||
|
" # apply Transformer blocks\n",
|
|||
|
" for blk in model.blocks:\n",
|
|||
|
" x = blk(x)\n",
|
|||
|
" x = model.norm(x)\n",
|
|||
|
"\n",
|
|||
|
" return x\n",
|
|||
|
"\n",
|
|||
|
"def restore_one_image(img, model):\n",
|
|||
|
" x = torch.tensor(img)\n",
|
|||
|
"\n",
|
|||
|
" # make it a batch-like\n",
|
|||
|
" x = x.unsqueeze(dim=0)\n",
|
|||
|
" x = torch.einsum('nhwc->nchw', x)\n",
|
|||
|
"\n",
|
|||
|
" # run MAE\n",
|
|||
|
" # loss, ty, mask = model(x.float(), mask_ratio=0)\n",
|
|||
|
"\n",
|
|||
|
" tx = forward_encoder(model, x.float())\n",
|
|||
|
"\n",
|
|||
|
" l, m, i = model.forward_encoder(x.float(), 0.75);\n",
|
|||
|
"\n",
|
|||
|
" print(l.shape, tx.shape)\n",
|
|||
|
" print(i.shape, ids_restore.shape)\n",
|
|||
|
"\n",
|
|||
|
" print(i)\n",
|
|||
|
"\n",
|
|||
|
" ty = model.forward_decoder(tx, ids_restore)\n",
|
|||
|
" \n",
|
|||
|
" y = model.unpatchify(ty)\n",
|
|||
|
" y = torch.einsum('nchw->nhwc', y).detach().cpu()\n",
|
|||
|
"\n",
|
|||
|
" x = torch.einsum('nchw->nhwc', x)\n",
|
|||
|
" \n",
|
|||
|
" #mask = model.unpatchify(x.float()) # 1 is removing, 0 is keeping\n",
|
|||
|
" #mask = torch.einsum('nchw->nhwc', mask).detach().cpu()\n",
|
|||
|
"\n",
|
|||
|
" # make the plt figure larger\n",
|
|||
|
" plt.rcParams['figure.figsize'] = [12, 12]\n",
|
|||
|
"\n",
|
|||
|
" plt.subplot(1, 2, 1)\n",
|
|||
|
" show_image(x[0], \"original\")\n",
|
|||
|
"\n",
|
|||
|
" plt.subplot(1, 2, 2)\n",
|
|||
|
" show_image(y[0], \"reconstruction\")\n",
|
|||
|
" \n",
|
|||
|
" plt.show()\n",
|
|||
|
"\n",
|
|||
|
"torch.manual_seed(5)\n",
|
|||
|
"print('MAE with pixel reconstruction:')\n",
|
|||
|
"restore_one_image(mine_img, model_mae)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"accelerator": "GPU",
|
|||
|
"colab": {
|
|||
|
"gpuType": "T4",
|
|||
|
"provenance": [],
|
|||
|
"toc_visible": true
|
|||
|
},
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3 (ipykernel)",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.11.7"
|
|||
|
},
|
|||
|
"widgets": {
|
|||
|
"application/vnd.jupyter.widget-state+json": {
|
|||
|
"047ea2ea246342f18a2d70390099c0f5": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"070c3ed170534dcaa3da118dccc78aa5": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"0c29f121e84a44608393ade2b1381116": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"0c3bdf21300f4610a68d9dbfa566a1fd": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"0c60f13e34d14fef9d0bbf6d7ded673a": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"0f00ffdd775042aa8860456d5b3440a2": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"126c0bb014d84c3abf231605148a8353": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"13477a6d079a45c8b340cfe7f18df03d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"177d3c0836c14df986e732b5331825d6": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_d1c852ac83ca466b839620a2d362d587",
|
|||
|
"IPY_MODEL_2eb19f9206bf48809789b6eb15723c10",
|
|||
|
"IPY_MODEL_855c15c10a2844b29c036c2ce58c866a"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_070c3ed170534dcaa3da118dccc78aa5"
|
|||
|
}
|
|||
|
},
|
|||
|
"1a6a711d2b5e4ea7a8c769c36e194335": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"1c1872a626dd4856a621bbc425c4a947": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_27587b51d0694c67b0465a4929911cd6",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_1e0d7aa70cf4490d97ad44009f6105c5",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"1c5e517cebbc4d96b4d260676eca961f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_20f188a8bf53479983bdf9c2df2a55e0",
|
|||
|
"IPY_MODEL_6e196069369c4126acdc53ac6da328aa",
|
|||
|
"IPY_MODEL_f3b39579ce11475ea2ca67198c64f66a"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_b15d030dacc84d3d89a38d3f48c094e7"
|
|||
|
}
|
|||
|
},
|
|||
|
"1de75ad1a9e740c18f8cf2ed2cd5955b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"1e0d7aa70cf4490d97ad44009f6105c5": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"1f6e9b83a8744173a162f479dd04dc6f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"1fc700d2efc1488b84cc18c540f6e497": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_8afa3c2d298b40c9be0312768d98fd7c",
|
|||
|
"IPY_MODEL_948e95b9112b4e31945e509c68ab8ec9",
|
|||
|
"IPY_MODEL_381466138eaa45278002150b1219293f"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_2a516ab4e8c247599fb7faf9ec95f676"
|
|||
|
}
|
|||
|
},
|
|||
|
"20a2d55104cc4a98a06c5bf50a80b51c": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"20f188a8bf53479983bdf9c2df2a55e0": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_f0a2ddf4f8a54ccd8e301b54943bb88c",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_d9164be3d674410da5eee962bc243727",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"2189d23f386a4c00ae11995e974569eb": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"223a29e7d81049debc22a75a4027e113": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_96ddd57e6ccf4e9a82a6575b4a9843f1",
|
|||
|
"IPY_MODEL_ef976e12f2144286af54f4ee339c08de",
|
|||
|
"IPY_MODEL_8da43c5164f64e7d8bb645099e1ee3e6"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_3d98aea664c645089d693365d784a580"
|
|||
|
}
|
|||
|
},
|
|||
|
"2434f5e02bdf4fc78c88d4c146ff6ae7": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"24729235af21409696bed8f0b01e5127": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"27587b51d0694c67b0465a4929911cd6": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"2805a35efa4a401ea88c3a22dd9752f5": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"297cbe85fb7041cf94532a565e83397b": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"29bed95021784427be407f74be7daff0": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_9387e448cba046bb913d9d60ceefe363",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_ee038165676342fd952cc958de73697f",
|
|||
|
"value": " 175/175 [00:12<00:00, 18.64it/s, loss: 206.76303100585938]"
|
|||
|
}
|
|||
|
},
|
|||
|
"2a516ab4e8c247599fb7faf9ec95f676": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"2eb19f9206bf48809789b6eb15723c10": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_581562b79aac46fb947d61130897e232",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_aaa0adc4eefd49c1a96055eae215d7eb",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"2f347bd02cb944ccad43744dd7e4eeea": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_cdd01d42b3d24f99b390b8a8fbf8dcf7",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_6c39e034913845b797600de2fafe98aa",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"323712cc4b21465f894dbb2ab3960178": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"35a4be6db57c4ae2b36604feae29d861": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_6cc313af7666494794ee75d95aff9289",
|
|||
|
"IPY_MODEL_9152e497a92b4ef1b33612cfd628f739",
|
|||
|
"IPY_MODEL_29bed95021784427be407f74be7daff0"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_323712cc4b21465f894dbb2ab3960178"
|
|||
|
}
|
|||
|
},
|
|||
|
"381466138eaa45278002150b1219293f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_0c60f13e34d14fef9d0bbf6d7ded673a",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_2434f5e02bdf4fc78c88d4c146ff6ae7",
|
|||
|
"value": " 175/175 [00:12<00:00, 17.95it/s, loss: 156.27389526367188]"
|
|||
|
}
|
|||
|
},
|
|||
|
"38c1e5f53c674dffb84d117171fc2563": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"3d98aea664c645089d693365d784a580": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"3e6f882231d2445cbad2dc940eb1c056": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_851361f7fb4f4db6a4a165b21d627af3",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_0f00ffdd775042aa8860456d5b3440a2",
|
|||
|
"value": " 175/175 [00:12<00:00, 16.92it/s, loss: 152.1123046875]"
|
|||
|
}
|
|||
|
},
|
|||
|
"45fead35e2114df598508e5694f62bef": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_a5da50968aae432aa5b3c90c8e7ddb04",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_95c22c37f1b04034b4132ea248af2e94",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"471be6fd1d8c4925a5ed4d2a9ec7673c": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"48d4a0722e9d42398e3ae796f44170e8": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"4d5f2b6c66904e7bb2f49f7b39174de4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_f5fbf0c6280c41b59e7f48e05afe8d20",
|
|||
|
"IPY_MODEL_c05fd736bc514fd4810efe5b3eaa9c55",
|
|||
|
"IPY_MODEL_3e6f882231d2445cbad2dc940eb1c056"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_828eeb2e8ab346a297928bbea0eec155"
|
|||
|
}
|
|||
|
},
|
|||
|
"4f882fc7f8054471855b77b116fd566b": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"529be14dea3e41d89f80b7dcb6347f22": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_24729235af21409696bed8f0b01e5127",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_047ea2ea246342f18a2d70390099c0f5",
|
|||
|
"value": " 175/175 [00:13<00:00, 17.49it/s, loss: 204.53260803222656]"
|
|||
|
}
|
|||
|
},
|
|||
|
"53dac5aeffcb41d388da7f4aaf5e19b9": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"581562b79aac46fb947d61130897e232": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"5a0653f04c624aed8ba9af0eaad8b0fd": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"6599dc2951474e4282ff1894ec0851e8": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_b61d6e41157e43ee99f40d8b018877c4",
|
|||
|
"IPY_MODEL_2f347bd02cb944ccad43744dd7e4eeea",
|
|||
|
"IPY_MODEL_94f52e75bcfe48a2a51fbaf59c22352c"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_0c3bdf21300f4610a68d9dbfa566a1fd"
|
|||
|
}
|
|||
|
},
|
|||
|
"680ba64a00484feba87714c8ac2b2f1e": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"6c39e034913845b797600de2fafe98aa": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"6cc313af7666494794ee75d95aff9289": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_9f4caca2a12a4e64998d8e4977e2d038",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_be92dee7c4dc46edb88c555550f9ae37",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"6e196069369c4126acdc53ac6da328aa": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_ba9e7a3a9bbb46faaabdcc944650f4af",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_a4c68ce78f024f9aa4bd2fe3ac296d25",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"6f1de415698948e2b4747e34f36684a4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_c9d3591403d242dab30233318dd592ea",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_126c0bb014d84c3abf231605148a8353",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"72a4a60175c34a6680df47c0e1002d90": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"78274c291a2044a196f5ea743d2853a7": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_1c1872a626dd4856a621bbc425c4a947",
|
|||
|
"IPY_MODEL_6f1de415698948e2b4747e34f36684a4",
|
|||
|
"IPY_MODEL_529be14dea3e41d89f80b7dcb6347f22"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_a3fc766655ce445dabb70df3fe051df0"
|
|||
|
}
|
|||
|
},
|
|||
|
"7913abef7f9147e19c39b54878f1d73e": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"828eeb2e8ab346a297928bbea0eec155": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"851361f7fb4f4db6a4a165b21d627af3": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"855c15c10a2844b29c036c2ce58c866a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_d2946fea7b7d42fa98ec040769478597",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_96b3a74edb9b4400bf9c1fe1b7010f03",
|
|||
|
"value": " 175/175 [00:12<00:00, 17.72it/s, loss: 156.78253173828125]"
|
|||
|
}
|
|||
|
},
|
|||
|
"8afa3c2d298b40c9be0312768d98fd7c": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_e33d1e0e7cb646aa8803b7338f6da888",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_1de75ad1a9e740c18f8cf2ed2cd5955b",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"8da43c5164f64e7d8bb645099e1ee3e6": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_2189d23f386a4c00ae11995e974569eb",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_2805a35efa4a401ea88c3a22dd9752f5",
|
|||
|
"value": " 175/175 [00:12<00:00, 17.29it/s, loss: 169.45787048339844]"
|
|||
|
}
|
|||
|
},
|
|||
|
"8dffad816bec4292a338af6c8b3a1e5d": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"8e950e1ea7d047618f38b6619a6312e1": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"9152e497a92b4ef1b33612cfd628f739": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_680ba64a00484feba87714c8ac2b2f1e",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_38c1e5f53c674dffb84d117171fc2563",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"9387e448cba046bb913d9d60ceefe363": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"93eb82f2191a4e42887695889f30a503": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"948e95b9112b4e31945e509c68ab8ec9": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_471be6fd1d8c4925a5ed4d2a9ec7673c",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_0c29f121e84a44608393ade2b1381116",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"94ea667c7972465e8166c8747ef24d94": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"94f52e75bcfe48a2a51fbaf59c22352c": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_8dffad816bec4292a338af6c8b3a1e5d",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_9b2657e17fca494aa30a07f515e1d35d",
|
|||
|
"value": " 175/175 [00:12<00:00, 17.75it/s, loss: 151.23312377929688]"
|
|||
|
}
|
|||
|
},
|
|||
|
"95c22c37f1b04034b4132ea248af2e94": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"96b3a74edb9b4400bf9c1fe1b7010f03": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"96ddd57e6ccf4e9a82a6575b4a9843f1": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_ec552968d3f64c57b2f854f118dd234b",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_7913abef7f9147e19c39b54878f1d73e",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"9b2657e17fca494aa30a07f515e1d35d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"9f4caca2a12a4e64998d8e4977e2d038": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"a0091f5723714384a05b0c27c489ff1b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_e3806093ea654edcac0e153bd7ccdf9e",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_1f6e9b83a8744173a162f479dd04dc6f",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"a3e241c8ed1449aa9e3adce6f9fa69bf": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"a3fc766655ce445dabb70df3fe051df0": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"a4c68ce78f024f9aa4bd2fe3ac296d25": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"a5da50968aae432aa5b3c90c8e7ddb04": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"aaa0adc4eefd49c1a96055eae215d7eb": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"b15d030dacc84d3d89a38d3f48c094e7": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"b4f60946184f439ba90f79cda27aa34a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"b61d6e41157e43ee99f40d8b018877c4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_8e950e1ea7d047618f38b6619a6312e1",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_5a0653f04c624aed8ba9af0eaad8b0fd",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"b6a804a7415c41a19cfdd2b3af153629": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_1a6a711d2b5e4ea7a8c769c36e194335",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_53dac5aeffcb41d388da7f4aaf5e19b9",
|
|||
|
"value": " 175/175 [00:12<00:00, 16.65it/s, loss: 171.0970916748047]"
|
|||
|
}
|
|||
|
},
|
|||
|
"ba9e7a3a9bbb46faaabdcc944650f4af": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"baf572d365b74d8e81eb468b66e6b045": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_d918542d0318488c88829bc650b6b8cc",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_fcb5fce90c82415589f58057fc51812b",
|
|||
|
"value": " 175/175 [00:12<00:00, 20.34it/s, loss: 192.555908203125]"
|
|||
|
}
|
|||
|
},
|
|||
|
"bb28b9a67e63424ba4203d4a44de8dd4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"bcc33f1b00f14139b3719c2f7a622960": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_45fead35e2114df598508e5694f62bef",
|
|||
|
"IPY_MODEL_f892714895654834a2bd95d04f2aff67",
|
|||
|
"IPY_MODEL_b6a804a7415c41a19cfdd2b3af153629"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_d64e3edbe0914733b7a27f35a71bc9c8"
|
|||
|
}
|
|||
|
},
|
|||
|
"be92dee7c4dc46edb88c555550f9ae37": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"c05fd736bc514fd4810efe5b3eaa9c55": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_48d4a0722e9d42398e3ae796f44170e8",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_bb28b9a67e63424ba4203d4a44de8dd4",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"c0da3b83a124493fa8364441caa4cf00": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"c5fac4f1cbf64dd08351ea32fb4b4a59": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"c8a81fdd7aa143e9a7bb54d490cb105e": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"c9b3bccd02ee402c99c5c10e6c03530d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"c9d3591403d242dab30233318dd592ea": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"caf7a900394c4705bc30d3cdecb0e24d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_ea89a8bbbf8d43f19fcf91ff8935ec84",
|
|||
|
"IPY_MODEL_a0091f5723714384a05b0c27c489ff1b",
|
|||
|
"IPY_MODEL_baf572d365b74d8e81eb468b66e6b045"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_c5fac4f1cbf64dd08351ea32fb4b4a59"
|
|||
|
}
|
|||
|
},
|
|||
|
"cdd01d42b3d24f99b390b8a8fbf8dcf7": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"d1c852ac83ca466b839620a2d362d587": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_c8a81fdd7aa143e9a7bb54d490cb105e",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_c0da3b83a124493fa8364441caa4cf00",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"d2946fea7b7d42fa98ec040769478597": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"d64e3edbe0914733b7a27f35a71bc9c8": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"d9164be3d674410da5eee962bc243727": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"d918542d0318488c88829bc650b6b8cc": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"e33d1e0e7cb646aa8803b7338f6da888": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"e3806093ea654edcac0e153bd7ccdf9e": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"ea89a8bbbf8d43f19fcf91ff8935ec84": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_72a4a60175c34a6680df47c0e1002d90",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_c9b3bccd02ee402c99c5c10e6c03530d",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"ec552968d3f64c57b2f854f118dd234b": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"ee038165676342fd952cc958de73697f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"ef976e12f2144286af54f4ee339c08de": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_4f882fc7f8054471855b77b116fd566b",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_b4f60946184f439ba90f79cda27aa34a",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"f0a2ddf4f8a54ccd8e301b54943bb88c": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"f3b39579ce11475ea2ca67198c64f66a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_20a2d55104cc4a98a06c5bf50a80b51c",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_94ea667c7972465e8166c8747ef24d94",
|
|||
|
"value": " 175/175 [00:12<00:00, 17.98it/s, loss: 253.90286254882812]"
|
|||
|
}
|
|||
|
},
|
|||
|
"f5fbf0c6280c41b59e7f48e05afe8d20": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_297cbe85fb7041cf94532a565e83397b",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_13477a6d079a45c8b340cfe7f18df03d",
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"f892714895654834a2bd95d04f2aff67": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_93eb82f2191a4e42887695889f30a503",
|
|||
|
"max": 175,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_a3e241c8ed1449aa9e3adce6f9fa69bf",
|
|||
|
"value": 175
|
|||
|
}
|
|||
|
},
|
|||
|
"fcb5fce90c82415589f58057fc51812b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 4
|
|||
|
}
|