
1

1.1

key: JDQLWBSNZM
w1: MONISTICAL
w2: APHRODITES

1.2

The first step was to load all the words from the word list into a tree, where each depth of the tree
corresponds with an ith letter of the word. The branches that come off each node correspond to the
next letter of the word.i.e.

• aa. . .

• ab. . .

• ba. . .

Would generate a tree that looks like:

() → (a → (a, b), b → (a))

Since the words were encrypted with the same key, that means if we were to generate a possible
key, that key would need to decrypt both ciphertexts such that when the tree is navigated we navigate
to nodes that exist. If the key results in a path in the tree that does not exist, then we can disregard
that answer as a possible key and continue with the possible next key. Once you find a key that is the
same length as the cipher text, we know that we found the right key.

2

2.1

Ciphertext: 6cea122f3b42975bdbbeb7f2c6efaf9fd5a54fdd623c276f55358f4fbcb7a9492d0451b7019c69faef5fd23103ff7ec521fbbc6516ca2cb2ca663d5dbff86bcf
T=2nd block
U=6th byte from the 2nd block (38th bit overall)
V=0x33
W=0x3c
X=8th byte from the 2nd block (40th bit overall)
Y=0x6c
Z=0x6f
To change the given cipher text, we need to first find the block we want to change and go to the

previous block, this only works for blocks after the first one, after that, we need to find the value that
comes out of the Encryption function, and we can do that if we follow this formula:

After Encryption⊕Previous Block Original Ciphertext = PlainText ⇐⇒ After Encryption = Previous Block Original Ciphertext⊕PlainText

After we calculate the value that comes out of the encryption function and before we xor with the
previous block, we can now calculate the value that we need to change the previous block in the cipher
text to:

After Encryption⊕Previous Block Altered Ciphertext = Altered PlainText ⇐⇒ Previous Block Altered Ciphertext = After Encryption⊕Altered PlainText

2.2

The plaintext will change in the sections that we want to change; ”7:00” to ”8:30”; and ”t Guildford
Stat” will change to random values.

1

2.3

The change is similar to the one described in 2.1 but with the iv value instead of the previous block

After Encryption⊕Original IV value = PlainText ⇐⇒ After Encryption = Original IV value⊕PlainText

After we calculate the value that comes out of the encryption function and before we xor with IV
value, we can now calculate the value that we need to change the IV value to:

After Encryption⊕New IV value = Altered PlainText ⇐⇒ New IV value = After Encryption⊕Altered PlainText

2.4

You cannot change the location word ”station” because the word is spread between 2 blocks, which
means that to change the second part of the word ”ion”, you need to change the previos block but by
changing the previous block the rest of the word ”stat” would have become garbled.

3

3.1

The computational hard problem is factorization

3.2

I used factorization to obtain the private key. After obtaining the private key, I can decrypt the cipher
text and obtain ”handlebars”

3.3

I used the general number sieve[1] to factorize the public modulus and obtained:

p = 112546167358047505471958486197519319605436748416824057782825895564365669780011

and

q = 65802972772386034028625679514602920156340140357656235951559577501150333990623

with p and q I calculated

d = 15456539435705642462121419885899941392796455594867269122932971401500915

98977726717239879077953798120855868459360771804433616650588668281034152580212290153

with d you can decrypt the ciphertext I used the OpenSSL crypto library with the p, q, d,m, e to
decrypt the cipher text

3.4

While factorizing the numbers takes more time, than a dictionary attack, it allows me to decrypt any
message that was encrypted with this public key. It also allows me to decrypt messages that have
different padding, including padding methods that use random values.

3.5

Yes, since I know the private key I can just decrypt the message.

2

4

4.1

P ||R = E(K,C)

then you can remove the R part and the P can be obtained

4.2

The q pairs could look like:
(1, k), (2, k), (3, k) · · · (q, k)

where k is a constant value for simplicity sets say k = 0
Eb is the list of encrypted values returned by the oracle
These q pairs work because when the oracle selects b=0:
There will be no collisions:

∀i, k : i ̸= j ∧ P0i ̸= P0j =⇒ E0i ̸= E0j

therefore if you don’t find any colissions you can assume that the the oracle selected b=0
if the oracle selects b=1 and if q is big enough, there will be colissions:

∃i, k : i ̸= j ∧ P1i = P1j ∧Ri = Rj =⇒ E1i = E1j

where R is the list of random values generated for each pair

4.3

Our random value is R = u − bitlongdigit which means that it has 2u possible values. And since we

know that if we throw q balls into p holes, a collision is bound to happen at the probability of q2

2p , that
guessing a 2u random value by doing q guesses is:

q2

2(2u)

We can calculate:
q2

2(2u)
>

1

2
⇐⇒ q > 2

u
2

4.4

The size of TripleDES is 64 bit long which makes u = 64/2 = 32 making the q

q > 2
32
2 ⇐⇒ q > 65536

4.5

The size of AES is 128 bit long which makes u = 128/2 = 64 making the q

q > t2
64
2 ⇐⇒ q > 4294967296

4.6

Since in both 4.4 and 4.5 the value of q is not large enough, the scheme is not CPA secure

3

5

5.1

The hash function is collision resistant for n = 1, since if the block size is one of, the hash function is
the encryption. Therefore: if the message is only one block long:

H = E

m ̸= m′

H(m) = E(K, IV ⊕m) = C1

H(m′) = E(K, IV ⊕m′) = C2

And if the hashing function was not collision resistant, that would imply

C1 = C2 =⇒ D(C1) = D(C2) =⇒ m = m′

and since m ̸= m′ the hash function is collision resistant, for messages with 1 block.
For if the block size is bigger than one we can say

H(m) = E(m)Last Block

E(m) = E(K,m)

∃a, b, c, d : m = a||b ∧m′ = c||d

where a,b,c,d are the size of one block

H(m) = E(b⊕ E(a⊕ IV)) = C1

H(m′) = E(d⊕ E(c⊕ IV)) = C2

since it’s possible to have:
b⊕ E(a⊕ IV) = d⊕ E(c⊕ IV) =⇒

=⇒ C1 = C2

with:
a ̸= b ̸= c ̸= d

therefore
H(m) = H(m′) ∧m ̸= m′

therefore, the hash function is not collision resistant. Since this can be expanded with more than 2
blocks, the hash function is not collision resistant for any message bigger than 1 block.

5.2

When the message has the size of a block, the authenticated encryption system scheme has both data
confidentiality and integrity because the hash function is only collision resistant with messages of block
size 1. As a result, it is impossible to change the ciphertext in away that when the MAC is generated
on the receiver side, the mac will not be the same. And since the mac key is not public, the attacker
cannot generate a new mac to authenticate the fake message.

When the message has a bigger size than one block, the scheme still has data confidentiality because
the message can still not be decrypted without knowing the key. But it has no longer data integrity
because the attacker can change the message in such a way that it would generate a hash collision;
therefore the receiver could not prove that the information that was received was not sent that way
by the sender; therefore the encryption system does not have data integrity.

4

6

Senario 1

6.1.1

Bob can check if the equation holds then Bob knows that Alice signed the Contract

h = H(gs × yh mod p||C)

where y is Alice’s pub key.

6.1.2

If the Alice used the the same r then this equation would only have 2 variables to solve, a and r which
makes this equation possible to solve.{

s = r − h× a mod q

s′ = r − h′ × a mod q
⇐⇒

{
r = s+ h× a

a = s′−s
h−h′ ∧ h ̸= h′

therefor Alice private key a is:

a =
s′ − s

h− h′

Senario 2

6.2.1

To sign a contract C Alice first chooses 2 random values r and c2 then z is calculated z = gr × yc2b .
After we have z we can calculate the intermediary value c, c = H(ya, yb, C, z). After having c we
calculate c1, c1 = c− c2. c1 is then used to calculate s = r − c1× amodq. The signature is (c1, c2, s)

6.2.2

No because Alice only needs Bob’s public key which is publicly avaiable

6.2.3

The signature is verified if the equation holds

c1 + c2 = H(ya, yb, C, g
s × yc1a × yc2b modp)

6.2.4

No, because the signature is generated from multiple public keys and Alice’s private key; therefore
Chris will not be able to tell who signed the contract

Senario 3

6.3.1

The encryption works because the numbers that were chosen by Alice and Bob make this equation
work

(mra)rb = m(mod p)

which means that

(((mra1)rb1)ra2)rb2 = m(mod p)

in this case, ra1 from Alice cancels ra2 from Alice, and rb1 from Bob cancels rb2 from Bob.

5

6.3.2

To send an encrypted message using this system between 2 people, i.e. Alice and Bob:

1. Bob and Alice choose a prime p

2. The sender, let’s say Alice, selects m and two random values ra1 and ra2 such that (mra1)ra2 =
m(mod p)

3. Alice then calculates t1 = mra1(mod p), Alice sends t1 to bob.

4. Bob selects two random values rb1 and rb2 such that (mrb1)rb2 = m(mod p)

5. Bob then calculates t2 = t1rb1(mod p), Bob sends t2 to Alice

6. Alice then calculates t3 = t2ra2(mod p), this undoes step 3, then Alice sends t3 to bob

7. Bob then calculates m = t3rb2(mod p), this undoes step 5

6.3.3

Information is exchanged 4 times with this crypto system, they choose the primes and then 3 exchanges
happen during the encryption process.

While for ElGamal you need to exchange information only twice, once to exchange public keys and
the second to exchange the encrypted message

6.3.4

If the discrete logarithm problem is easy to solve, then Elgamal is also easy to solve. While for this
case, the being able to solve the discrete logarithm problem does not help an attacker with breaking
the algorithm; because the attacker only knows the result of the exponentiation and does not know
the value of the base. This is not the case with Elgamal, where the base is publicly known.

The Diffie-Hellman problem also does not apply, since that problem relies on. If we know gx and
gy being able to figure out gxy but in this case the problem is slightly different. In this case the
base, m is not public therefore being able to solve the Diffie-Hellman problem, does not help with this
encryption problem.

7

7.1

v1 = (137, 312), v2 = (215,−187)

u1 = (1975, 438), u2 = (7548, 1627)

B =

(
137 312
215 −187

)
U =

(
1975 438
7548 1627

)
A:

det(L) = |det(B)| = | − 92699| = 92699

H(B) = (
det(L)

∥v1∥ × ∥v2∥
)
1
n = (

92699√
v121 + v122 ×

√
v221 + v222

)
1
2 =

6

=

√
92699

9427678922
1
4

≈ 0.977094 ≈ 0.98

The Hadamard ration for the private bias is 0.98

H(U) = (
det(L)

∥u1∥ × ∥u2∥
)
1
n = (

92699√
u121 + u122 ×

√
u221 + u222

)
1
2 =

=

√
92699

243990681350077
1
4

≈ 0.0770361 ≈ 0.077

The Hadamard ration for the public bias is 0.077
B:

w = (30548, 6642){
30548 = 137t1 + 215t2

6642 = 312t1 +−187t2
=

{
t1 =

7140506
92699

t2 =
8621022
92699

=

{
t1 ≈ 77.03

t2 ≈ 93
=

{
t1 ≈ 77

t2 ≈ 93

v′ = 77(137, 312) + 93(215,−187) = (30544, 6633)

r = w − v′ = (4, 9)

w = v′ ×m+ r ⇐⇒ m = (30544, 6633)×
(
1975 438
7548 1627

)−1

⇐⇒ m = (4, 3)

The plaintext is (4, 3) and the r = (4, 9)
C: {

30548 = 1975t1 + 7548t2

6642 = 438t1 + 1627t2
=

{
t1 =

432220
92699

t2 =
262074
92699

=

{
t1 ≈ 4.66

t2 ≈ 2.83
=

{
t1 ≈ 5

t2 ≈ 3

v′ = 5(1975, 438) + 3(7548, 1627) = (32519, 7071)

w = v′ ×m′ + r ⇐⇒ m′ = (32519, 7071)×
(
1975 438
7548 1627

)−1

⇐⇒ m′ = (5, 3)

Using u1 and u2 we do not dectypt correctly m ̸= m′

7.2

No, he should not. If r is not changed, then we could submit to the oracle (1, 0) and (2, 0) and if the
oracle gives us 2 cipher texts that are the same then we know that b = 1 and if they are different,
then we know its b = 0 therefore not changing the r is not secure.

References

[1] T. C.-N. D. Team, CADO-NFS, an implementation of the number field sieve algorithm, Release
2.3.0, 2017. [Online]. Available: http://cado-nfs.inria.fr/.

7

http://cado-nfs.inria.fr/

